ترغب بنشر مسار تعليمي؟ اضغط هنا

On non-unique solutions in mean field games

144   0   0.0 ( 0 )
 نشر من قبل Bruce Hajek
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The theory of mean field games is a tool to understand noncooperative dynamic stochastic games with a large number of players. Much of the theory has evolved under conditions ensuring uniqueness of the mean field game Nash equilibrium. However, in some situations, typically involving symmetry breaking, non-uniqueness of solutions is an essential feature. To investigate the nature of non-unique solutions, this paper focuses on the technically simple setting where players have one of two states, with continuous time dynamics, and the game is symmetric in the players, and players are restricted to using Markov strategies. All the mean field game Nash equilibria are identified for a symmetric follow the crowd game. Such equilibria correspond to symmetric $epsilon$-Nash Markov equilibria for $N$ players with $epsilon$ converging to zero as $N$ goes to infinity. In contrast to the mean field game, there is a unique Nash equilibrium for finite $N.$ It is shown that fluid limits arising from the Nash equilibria for finite $N$ as $N$ goes to infinity are mean field game Nash equilibria, and evidence is given supporting the conjecture that such limits, among all mean field game Nash equilibria, are the ones that are stable fixed points of the mean field best response mapping.

قيم البحث

اقرأ أيضاً

Mean field games are concerned with the limit of large-population stochastic differential games where the agents interact through their empirical distribution. In the classical setting, the number of players is large but fixed throughout the game. Ho wever, in various applications, such as population dynamics or economic growth, the number of players can vary across time which may lead to different Nash equilibria. For this reason, we introduce a branching mechanism in the population of agents and obtain a variation on the mean field game problem. As a first step, we study a simple model using a PDE approach to illustrate the main differences with the classical setting. We prove existence of a solution and show that it provides an approximate Nash-equilibrium for large population games. We also present a numerical example for a linear--quadratic model. Then we study the problem in a general setting by a probabilistic approach. It is based upon the relaxed formulation of stochastic control problems which allows us to obtain a general existence result.
We propose and investigate a general class of discrete time and finite state space mean field game (MFG) problems with potential structure. Our model incorporates interactions through a congestion term and a price variable. It also allows hard constr aints on the distribution of the agents. We analyze the connection between the MFG problem and two optimal control problems in duality. We present two families of numerical methods and detail their implementation: (i) primal-dual proximal methods (and their extension with nonlinear proximity operators), (ii) the alternating direction method of multipliers (ADMM) and a variant called ADM-G. We give some convergence results. Numerical results are provided for two examples with hard constraints.
The aim of this paper is to study first order Mean field games subject to a linear controlled dynamics on $mathbb R^{d}$. For this kind of problems, we define Nash equilibria (called Mean Field Games equilibria), as Borel probability measures on the space of admissible trajectories, and mild solutions as solutions associated with such equilibria. Moreover, we prove the existence and uniqueness of mild solutions and we study their regularity: we prove Holder regularity of Mean Field Games equilibria and fractional semiconcavity for the value function of the underlying optimal control problem. Finally, we address the PDEs system associated with the Mean Field Games problem and we prove that the class of mild solutions coincides with a suitable class of weak solutions.
We study the asymptotic organization among many optimizing individuals interacting in a suitable moderate way. We justify this limiting game by proving that its solution provides approximate Nash equilibria for large but finite player games. This pro of depends upon the derivation of a law of large numbers for the empirical processes in the limit as the number of players tends to infinity. Because it is of independent interest, we prove this result in full detail. We characterize the solutions of the limiting game via a verification argument.
Mean Field Games with state constraints are differential games with infinitely many agents, each agent facing a constraint on his state. The aim of this paper is to provide a meaning of the PDE system associated with these games, the so-called Mean F ield Game system with state constraints. For this, we show a global semiconvavity property of the value function associated with optimal control problems with state constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا