ترغب بنشر مسار تعليمي؟ اضغط هنا

An overview of the properties of a sample of newly-identified magnetic chemically peculiar stars in the Kepler field

112   0   0.0 ( 0 )
 نشر من قبل Zden\\v{e}k Mikul\\'a\\v{s}ek
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a comprehensive overview of the properties of a sample of 41 magnetic chemically peculiar stars that have been recently identified in the Kepler field by our team (H{u}mmerich et al. 2018). The stars populate the whole age range from zero-age to terminal-age main sequence in the mass interval from 1.5 to 4 Ms. Several of the studied objects exhibit a hitherto unobserved wealth of detail in their light curves indicative of persisting complex surface structures. Monoperiodic variability and light curve stability were identified as cardinal criteria for selecting mCP star candidates among early-type objects in photometric surveys. Subsequent studies will be concerned with an exhaustive follow-up analysis of the new mCP stars, which we expect to lead to new insights on the physics of the CP star phenomenon.

قيم البحث

اقرأ أيضاً

Recent re-determination of stellar atmospheric parameters for a sample of stars observed during the {it Kepler} mission allowed to enlarge the number of {it Kepler} B-type stars. We present the detailed frequency analysis for all these objects. All s tars exhibit pulsational variability with maximum amplitudes at frequencies corresponding to high-order g modes. Peaks that could be identified with low-order p/g modes are also extracted for a few stars. We identified some patters in the oscillation spectra that can be associated with the period spacings that can result from the asymptotic nature of the detected pulsational modes. We also tentatively confront the observed oscillation characteristics with predictions from linear nonadiabatic computations of stellar pulsations. For high-order g modes the traditional approximation was employed to include the effects of rotation on the frequency values and mode instability.
The late-B magnetic chemically peculiar star CU Vir is one of the fastest rotators among the intermediate-mass stars with strong fossil magnetic fields. It shows a prominent rotational modulation of the spectral energy distribution and absorption lin e profiles due to chemical spots and exhibits a unique strongly beamed variable radio emission. Little is known about the magnetic field topology of CU Vir. In this study we aim to derive, for the first time, detailed maps of the magnetic field distribution over the surface of this star. We use high-resolution spectropolarimetric observations covering the entire rotational period. These data are interpreted using a multi-line technique of least-squares deconvolution (LSD) and a new Zeeman Doppler imaging code based on detailed polarised radiative transfer modelling of the Stokes I and V LSD profiles. This new magnetic inversion approach relies on the spectrum synthesis calculations over the full wavelength range covered by observations and does not assume that the LSD profiles behave as a single spectral line with mean parameters. We present magnetic and chemical abundance maps derived from the Si and Fe lines. Mean polarisation profiles of both elements reveal a significant departure of the magnetic field topology of CU Vir from the commonly assumed axisymmetric dipolar configuration. The field of CU Vir is dipolar-like, but clearly non-axisymmetric, showing a large difference of the field strength between the regions of opposite polarity. The main relative abundance depletion features in both Si and Fe maps coincide with the weak-field region in the magnetic map. Detailed information on the distorted dipolar magnetic field topology of CU Vir provided by our study is essential for understanding chemical spot formation, radio emission, and rotational period variation of this star.
Magnetic chemically peculiar (mCP) stars are important to astrophysics because their complex atmospheres lend themselves perfectly to the investigation of the interplay between such diverse phenomena as atomic diffusion, magnetic fields, and stellar rotation. The present work is aimed at identifying new mCP stars using spectra collected by the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Suitable candidates were selected by searching LAMOST DR4 spectra for the presence of the characteristic 5200A flux depression. Spectral classification was carried out with a modified version of the MKCLASS code and the accuracy of the classifications was estimated by comparison with results from manual classification and the literature. Using parallax data and photometry from Gaia DR2, we investigated the space distribution of our sample stars and their properties in the colour-magnitude diagram. Our final sample consists of 1002 mCP stars, most of which are new discoveries (only 59 previously known). Traditional mCP star peculiarities have been identified in all but 36 stars, highlighting the efficiency of the codes peculiarity identification capabilities. The derived temperature and peculiarity types are in agreement with manually derived classifications and the literature. Our sample stars are between 100 Myr and 1 Gyr old, with the majority having masses between 2M(Sun) and 3M(Sun). Our results could be considered as strong evidence for an inhomogeneous age distribution among low-mass (M < 3M(Sun)) mCP stars. We identified several astrophysically interesting objects: two mCP stars have distances and kinematical properties in agreement with halo stars; an eclipsing binary system hosting an mCP star component; and an SB2 system likely comprising of an mCP star and a supergiant component.
The number of known variable stars has increased by several magnitudes over the last decade, and automated classification routines are becoming increasingly important to cope with this development. Here we show that the upside-down CBH variables, whi ch were proposed as a potentially new class of variable stars by Heinze et al. (2018) in the ATLAS First Catalogue of Variable Stars, are, at least to a high percentage, made up of alpha2 Canum Venaticorum (ACV) variables - that is, photometrically variable magnetic chemically peculiar (CP2/He-peculiar) stars - with distinct double-wave light curves. Using suitable selection criteria, we identified 264 candidate ACV variables in the ATLAS variable star catalogue. 62 of these objects were spectroscopically confirmed with spectra from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (all new discoveries except for nine stars) and classified on the MK system. The other 202 stars are here presented as ACV star candidates that require spectroscopic confirmation. The vast majority of our sample of stars are main-sequence objects. Derived masses range from 1.4M(Sun) to 5M(Sun), with half our sample stars being situated in the range from 2 M(Sun) to 2.4 M(Sun), in good agreement with the spectral classifications. Most stars belong to the thin or thick disk; four objects, however, classify as members of the halo population. With a peak magnitude distribution at around 14th magnitude, the here presented stars are situated at the faint end of the known Galactic mCP star population. Our study highlights the need to consider rare variability classes, like ACV variables, in automated classification routines.
We report the results of an observational study aimed at searching for magnetic pulsating hot stars suitable for magneto-asteroseismology. A sample of sixteen chemically peculiar stars was selected and analysed using both high-resolution spectropolar imetry with ESPaDOnS and K2 high-precision space photometry. For all stars, we derive the effective temperature, surface gravity, rotational and non-rotational line broadening from our spectropolarimetric data. High-quality K2 light curves were obtained for thirteen of the sixteen stars and revealed rotational modulation, providing accurate rotation periods. Two stars show evidence for roAp pulsations, and one star shows signatures of internal gravity waves or unresolved g-mode pulsations. We confirm the presence of a large-scale magnetic field for eleven of the studied stars, of which nine are first detections. Further, we report one marginal detection and four non-detections. Two of the stars with a non-detected magnetic field show rotational modulation due to surface abundance inhomogeneities in the K2 light curve, and we confirm that the other two are chemically peculiar. Thus, these five stars likely host a weak (undetected) large-scale magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا