ترغب بنشر مسار تعليمي؟ اضغط هنا

A Universal Relation of Dust Obscuration Across Cosmic Time

147   0   0.0 ( 0 )
 نشر من قبل Jianbo Qin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jianbo Qin




اسأل ChatGPT حول البحث

We investigate dust obscuration as parameterised by the infrared excess IRX$equiv$$L_{rm IR}/L_{rm UV}$ in relation to global galaxy properties, using a sample of $sim$32$,$000 local star-forming galaxies (SFGs) selected from SDSS, GALEX and WISE. We show that IRX generally correlates with stellar mass ($M_ast$), star formation rate (SFR), gas-phase metallicity ($Z$), infrared luminosity ($L_{rm IR}$) and the half-light radius ($R_{rm e}$). A weak correlation of IRX with axial ratio (b/a) is driven by the inclination and thus seen as a projection effect. By examining the tightness and the scatter of these correlations, we find that SFGs obey an empirical relation of the form $IRX$=$10^alpha,(L_{rm IR})^{beta},R_{rm e}^{-gamma},(b/a)^{-delta}$ where the power-law indices all increase with metallicity. The best-fitting relation yields a scatter of $sim$0.17$,$dex and no dependence on stellar mass. Moreover, this empirical relation also holds for distant SFGs out to $z=3$ in a population-averaged sense, suggesting it to be universal over cosmic time. Our findings reveal that IRX approximately increases with $L_{rm IR}/R_{rm e}^{[1.3 - 1.5]}$ instead of $L_{rm IR}/R_{rm e}^{2}$ (i.e., surface density). We speculate this may be due to differences in the spatial extent of stars versus star formation and/or complex star-dust geometries. We conclude that not stellar mass but IR luminosity, metallicity and galaxy size are the key parameters jointly determining dust obscuration in SFGs.



قيم البحث

اقرأ أيضاً

We study the dust evolution in galaxies by implementing a detailed dust prescription in the SAGE semi-analytical model for galaxy formation. The new model, called Dusty SAGE, follows the condensation of dust in the ejecta of type II supernovae and as ymptotic giant branch (AGB) stars, grain growth in the dense molecular clouds, destruction by supernovae shocks, and the removal of dust from the ISM by star formation, reheating, inflows and outflows. Our model successfully reproduces the observed dust mass function at redshift z = 0 and the observed scaling relations for dust across a wide range of redshifts. We find that the dust mass content in the present Universe is mainly produced via grain growth in the interstellar medium (ISM). By contrast, in the early Universe, the primary production mechanism for dust is the condensation in stellar ejecta. The shift of the significant production channel for dust characterises the scaling relations of dust-to-gas (DTG) and dust-to-metal (DTM) ratios. In galaxies where the grain growth dominates, we find positive correlations for DTG and DTM ratios with both metallicity and stellar mass. On the other hand, in galaxies where dust is produced primarily via condensation, we find negative or no correlation for DTM and DTG ratios with either metallicity or stellar mass. In agreement with observation showing that the circumgalactic medium (CGM) contains more dust than the ISM, our model also shows the same trend for z < 4. Our semi-analytic model is publicly available at https: //github.com/dptriani/dusty-sage.
Giant molecular clouds (GMCs) are well-studied in the local Universe, however, exactly how their properties vary during galaxy evolution is poorly understood due to challenging resolution requirements, both observational and computational. We present the first time-dependent analysis of giant molecular clouds in a Milky Way-like galaxy and an LMC-like dwarf galaxy of the FIRE-2 (Feedback In Realistic Environments) simulation suite, which have sufficient resolution to predict the bulk properties of GMCs in cosmological galaxy formation self-consistently. We show explicitly that the majority of star formation outside the galactic center occurs within self-gravitating gas structures that have properties consistent with observed bound GMCs. We find that the typical cloud bulk properties such as mass and surface density do not vary more than a factor of 2 in any systematic way after the first Gyr of cosmic evolution within a given galaxy from its progenitor. While the median properties are constant, the tails of the distributions can briefly undergo drastic changes, which can produce very massive and dense self-gravitating gas clouds. Once the galaxy forms, we identify only two systematic trends in bulk properties over cosmic time: a steady increase in metallicity produced by previous stellar populations and a weak decrease in bulk cloud temperatures. With the exception of metallicity we find no significant differences in cloud properties between the Milky Way-like and dwarf galaxies. These results have important implications for cosmological star and star cluster formation and put especially strong constraints on theories relating the stellar initial mass function to cloud properties.
We present predictions for the evolution of radio emission from Active Galactic Nuclei (AGNs). We use a model that follows the evolution of Supermassive Black Hole (SMBH) masses and spins, within the latest version of the GALFORM semi-analytic model of galaxy formation. We use a Blandford-Znajek type model to calculate the power of the relativistic jets produced by black hole accretion discs, and a scaling model to calculate radio luminosities. First, we present the predicted evolution of the jet power distribution, finding that this is dominated by objects fuelled by hot halo accretion and an ADAF accretion state for jet powers above $10^{32}mathrm{W}$ at $z=0$, with the contribution from objects fuelled by starbursts and in a thin disc accretion state being more important for lower jet powers at $z=0$ and at all jet powers at high redshifts ($zgeq3$). We then present the evolution of the jet power density from the model. The model is consistent with current observational estimates of jet powers from radio luminosities, once we allow for the significant uncertainties in these observational estimates. Next, we calibrate the model for radio emission to a range of observational estimates of the $z=0$ radio luminosity function. We compare the evolution of the model radio luminosity function to observational estimates for $0<z<6$, finding that the predicted evolution is similar to that observed. Finally, we explore recalibrating the model to reproduce luminosity functions of core radio emission, finding that the model is in approximate agreement with the observations.
We investigate the balance of power between stars and AGN across cosmic history, based on the comparison between the infrared (IR) galaxy luminosity function (LF) and the IR AGN LF. The former corresponds to emission from dust heated by stars and AGN , whereas the latter includes emission from AGN-heated dust only. We find that at all redshifts (at least up to z~2.5), the high luminosity tails of the two LFs converge, indicating that the most infrared-luminous galaxies are AGN-powered. Our results shed light to the decades-old conundrum regarding the flatter high-luminosity slope seen in the IR galaxy LF compared to that in the UV and optical. We attribute this difference to the increasing fraction of AGN-dominated galaxies with increasing total infrared luminosity (L_IR). We partition the L_IR-z parameter space into a star-formation and an AGN-dominated region, finding that the most luminous galaxies at all epochs lie in the AGN-dominated region. This sets a potential `limit to attainable star formation rates, casting doubt on the abundance of `extreme starbursts: if AGN did not exist, L_IR>10^13 Lsun galaxies would be significantly rarer than they currently are in our observable Universe. We also find that AGN affect the average dust temperatures (T_dust) of galaxies and hence the shape of the well-known L_IR-T_dust relation. We propose that the reason why local ULIRGs are hotter than their high redshift counterparts is because of a higher fraction of AGN-dominated galaxies amongst the former group.
We analyze 88 independent high-resolution cosmological zoom-in simulations of disk galaxies in the NIHAO simulations suite to explore the connection between the atomic gas fraction and angular momentum of baryons throughout cosmic time. The study is motivated by the analytic model of citet{obreschkow16}, which predicts a relation between the atomic gas fraction $f_{rm atm}$ and the global atomic stability parameter $q equiv jsigma / (GM)$, where $M$ and $j$ are the mass and specific angular momentum of the galaxy (stars+cold gas) and $sigma$ is the velocity dispersion of the atomic gas. We show that the simulated galaxies follow this relation from their formation ($zsimeq4$) to present within $sim 0.5$ dex. To explain this behavior, we explore the evolution of the local Toomre stability and find that $90%$--$100%$ of the atomic gas in all simulated galaxies is stable at any time. In other words, throughout the entire epoch of peak star formation until today, the timescale for accretion is longer than the timescale to reach equilibrium, thus resulting in a quasi-static equilibrium of atomic gas at any time. Hence, the evolution of $f_{rm atm}$ depends on the complex hierarchical growth history primarily via the evolution of $q$. An exception are galaxies subject to strong environmental effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا