ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant Reconciliation of Convex Models and the Planck

53   0   0.0 ( 0 )
 نشر من قبل Ali Akbar Abolhasani Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider single field chaotic inflationary models plus a cosine modulation term, as in axion monodromy models, and augment it by a light scalar field with similar cosine coupling. We show the power spectrum of curvature perturbations of this model is dominated by the one-loop contribution to inflaton two-point function which is enhanced due to resonant interactions. This allows to disentangle the scale of scalar and tensor perturbations and hence to suppress the ratio of tensor-to-scalar power spectra and alters the expression of scalar spectral tilt from the simple chaotic models, thus opening the way to reconcile chaotic models with convex potential and the Planck data. As in monodromy inflation models, we also have a cosine modulation in spectral tilt. We mention that contribution of resonance effects on non-Gaussianty is small and it remains within the current bounds. Resonant production of light particles toward the end of inflation may set the stage for a successful reheating model.



قيم البحث

اقرأ أيضاً

483 - Kendrick M. Smith 2014
The recent BICEP2 measurement of primordial gravity waves (r = 0.2^{+0.07}_{-0.05}) appears to be in tension with the upper limit from WMAP (r<0.13 at 95% CL) and Planck (r<0.11 at 95% CL). We carefully quantify the level of tension and show that it is very significant (around 0.1% unlikely) when the observed deficit of large-scale temperature power is taken into account. We show that measurements of TE and EE power spectra in the near future will discriminate between the hypotheses that this tension is either a statistical fluke, or a sign of new physics. We also discuss extensions of the standard cosmological model that relieve the tension, and some novel ways to constrain them.
Despite the remarkable success of the $Lambda$Cold Dark Matter ($Lambda$CDM) cosmological model, a growing discrepancy has emerged (currently measured at the level of $sim 4-6 sigma$) between the value of the Hubble constant $H_0$ measured using the local distance ladder and the value inferred using the cosmic microwave background and galaxy surveys. While a vast array of $Lambda$CDM extensions have been proposed to explain these discordant observations, understanding the (relative) success of these models in resolving the tension has proven difficult -- this is a direct consequence of the fact that each model has been subjected to differing, and typically incomplete, compilations of cosmological data. In this review, we attempt to make a systematic comparison of sixteen different models which have been proposed to resolve the $H_0$ tension (spanning both early- and late-Universe solutions), and quantify the relative success of each using a series of metrics and a vast array of data combinations. Owing to the timely appearance of this article, we refer to this contest as the $H_0$ Olympics; the goal being to identify which of the proposed solutions, and more broadly which underlying mechanisms, are most likely to be responsible for explaining the observed discrepancy (should unaccounted for systematics not be the culprit). This work also establishes a foundation of tests which will allow the success of novel proposals to be meaningful benchmarked.
Even simple inflationary scenarios have many free parameters. Beyond the variables appearing in the inflationary action, these include dynamical initial conditions, the number of fields, and couplings to other sectors. These quantities are often igno red but cosmological observables can depend on the unknown parameters. We use Bayesian networks to account for a large set of inflationary parameters, deriving generative models for the primordial spectra that are conditioned on a hierarchical set of prior probabilities describing the initial conditions, reheating physics, and other free parameters. We use $N_f$--quadratic inflation as an illustrative example, finding that the number of $e$-folds $N_*$ between horizon exit for the pivot scale and the end of inflation is typically the most important parameter, even when the number of fields, their masses and initial conditions are unknown, along with possible conditional dependencies between these parameters.
Cosmological constraints on the scalar-tensor theory of gravity by analyzing the angular power spectrum data of the cosmic microwave background (CMB) obtained from the Planck 2015 results are presented. We consider the harmonic attractor model, in wh ich the scalar field has a harmonic potential with curvature ($beta$) in the Einstein frame and the theory relaxes toward the Einstein gravity with time. Analyzing the {it TT}, {it EE}, {it TE} and lensing CMB data from Planck by the Markov chain Monte Carlo method, we find that the present-day deviation from the Einstein gravity (${alpha_0}^2$) is constrained as ${alpha_0}^2<2.5times10^{-4-4.5beta^2} (95.45% {rm C.L.})$ and ${alpha_0}^2<6.3times10^{-4-4.5beta^2} (99.99% {rm C.L.})$ for $0<beta<0.4$. The time variation of the effective gravitational constant between the recombination and the present epochs is constrained as $G_{rm rec}/G_0<1.0056 (95.45% {rm C.L.})$ and $G_{rm rec}/G_0<1.0115 (99.99 %{rm C.L.})$. We also find that the constraints are little affected by extending to nonflat cosmological models because the diffusion damping effect revealed by Planck breaks the degeneracy of the projection effect.
Big Bang Nucleosynthesis (BBN) relates key cosmological parameters to the primordial abundance of light elements. In this paper, we point out that the recent observations of Cosmic Microwave Background anisotropies by the Planck satellite and by the BICEP2 experiment constrain these parameters with such a high level of accuracy that the primordial deuterium abundance can be inferred with remarkable precision. For a given cosmological model, one can obtain independent information on nuclear processes in the energy range relevant for BBN, which determine the eventual ^2H/H yield. In particular, assuming the standard cosmological model, we show that a combined analysis of Planck data and of recent deuterium abundance measurements in metal-poor damped Lyman-alpha systems provides independent information on the cross section of the radiative capture reaction d(p,gamma)^3He converting deuterium into helium. Interestingly, the result is higher than the values suggested by a fit of present experimental data in the BBN energy range (10 - 300 keV), whereas it is in better agreement with ab initio theoretical calculations, based on models for the nuclear electromagnetic current derived from realistic interactions. Due to the correlation between the rate of the above nuclear process and the effective number of neutrinos Neff, the same analysis points out a Neff>3 as well. We show how this observation changes when assuming a non-minimal cosmological scenario. We conclude that further data on the d(p,gamma)^3He cross section in the few hundred keV range, that can be collected by experiments like LUNA, may either confirm the low value of this rate, or rather give some hint in favour of next-to-minimal cosmological scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا