ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-stationary dynamics and dissipative freezing in squeezed superradiance

109   0   0.0 ( 0 )
 نشر من قبل Carlos S\\'anchez Mu\\~noz
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we study the driven-dissipative dynamics of a coherently-driven spin ensemble with a squeezed, superradiant decay. This decay consists of a sum of both raising and lowering collective spin operators with a tunable weight. The model presents different critical non-equilibrium phases with a gapless Liouvillian that are associated to particular symmetries and that give rise to distinct kinds of non-ergodic dynamics. In Ref. [1] we focus on the case of a strong-symmetry and use this model to introduce and discuss the effect of dissipative freezing, where, regardless of the system size, stochastic quantum trajectories initialized in a superposition of different symmetry sectors always select a single one of them and remain there for the rest of the evolution. Here, we deepen this analysis and study in more detail the other type of non-ergodic physics present in the model, namely, the emergence of non-stationary dynamics in the thermodynamic limit. We complete our description of squeezed superradiance by analysing its metrological properties in terms of spin squeezing and by analysing the features that each of these critical phases imprint on the light emitted by the system.

قيم البحث

اقرأ أيضاً

In driven-dissipative systems, the presence of a strong symmetry guarantees the existence of several steady states belonging to different symmetry sectors. Here we show that, when a system with a strong symmetry is initialized in a quantum superposit ion involving several of these sectors, each individual stochastic trajectory will randomly select a single one of them and remain there for the rest of the evolution. Since a strong symmetry implies a conservation law for the corresponding symmetry operator on the ensemble level, this selection of a single sector from an initial superposition entails a breakdown of this conservation law at the level of individual realizations. Given that such a superposition is impossible in a classical, stochastic trajectory, this is a a purely quantum effect with no classical analogue. Our results show that a system with a closed Liouvillian gap may exhibit, when monitored over a single run of an experiment, a behaviour completely opposite to the usual notion of dynamical phase coexistence and intermittency, which are typically considered hallmarks of a dissipative phase transition. We discuss our results with a simple, realistic model of squeezed superradiance.
The assumption that quantum systems relax to a stationary state in the long-time limit underpins statistical physics and much of our intuitive understanding of scientific phenomena. For isolated systems this follows from the eigenstate thermalization hypothesis. When an environment is present the expectation is that all of phase space is explored, eventually leading to stationarity. Notable exceptions are decoherence-free subspaces that have important implications for quantum technologies and have so far only been studied for systems with a few degrees of freedom. Here we identify simple and generic conditions for dissipation to prevent a quantum many-body system from ever reaching a stationary state. We go beyond dissipative quantum state engineering approaches towards controllable long-time non-stationarity typically associated with macroscopic complex systems. This coherent and oscillatory evolution constitutes a dissipative version of a quantum time-crystal. We discuss the possibility of engineering such complex dynamics with fermionic ultracold atoms in optical lattices.
We study the null space degeneracy of open quantum systems with multiple non-Abelian, strong symmetries. By decomposing the Hilbert space representation of these symmetries into an irreducible representation involving the direct sum of multiple, comm uting, invariant subspaces we derive a tight lower bound for the stationary state degeneracy. We apply these results within the context of open quantum many-body systems, presenting three illustrative examples: a fully-connected quantum network, the XXX Heisenberg model and the Hubbard model. We find that the derived bound, which scales at least cubically in the system size the $SU(2)$ symmetric cases, is often saturated. Moreover, our work provides a theory for the systematic block-decomposition of a Liouvillian with non-Abelian symmetries, reducing the computational difficulty involved in diagonalising these objects and exposing a natural, physical structure to the steady states - which we observe in our examples.
Coherence is a defining feature of quantum condensates. These condensates are inherently multimode phenomena and in the macroscopic limit it becomes extremely difficult to resolve populations of individual modes and the coherence between them. In thi s work we demonstrate non-equilibrium Bose-Einstein condensation (BEC) of photons in a sculpted dye-filled microcavity, where threshold is found for $8pm 2$ photons. With this nanocondensate we are able to measure occupancies and coherences of individual energy levels of the bosonic field. Coherence of individual modes generally increases with increasing photon number, but at the breakdown of thermal equilibrium we observe multimode-condensation phase transitions wherein coherence unexpectedly decreases with increasing population, suggesting that the photons show strong inter-mode phase or number correlations despite the absence of a direct nonlinearity. Experiments are well-matched to a detailed non-equilibrium model. We find that microlaser and Bose-Einstein statistics each describe complementary parts of our data and are limits of our model in appropriate regimes, which informs the debate on the differences between the two.
The quantum dynamics of initial coherent states is studied in the Dicke model and correlated with the dynamics, regular or chaotic, of their classical limit. Analytical expressions for the survival probability, i.e. the probability of finding the sys tem in its initial state at time $t$, are provided in the regular regions of the model. The results for regular regimes are compared with those of the chaotic ones. It is found that initial coherent states in regular regions have a much longer equilibration time than those located in chaotic regions. The properties of the distributions for the initial coherent states in the Hamiltonian eigenbasis are also studied. It is found that for regular states the components with no negligible contribution are organized in sequences of energy levels distributed according to Gaussian functions. In the case of chaotic coherent states, the energy components do not have a simple structure and the number of participating energy levels is larger than in the regular cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا