ﻻ يوجد ملخص باللغة العربية
Vehicular ad-hoc networks (VANETs) have recently attracted a lot of attention due to their immense potentials and applications. Wide range of coverage and accessibility to end users make VANETs a good target for commercial companies. In this paper, we consider a scenario in which advertising companies aim to disseminate their advertisements in different areas of a city by utilizing VANETs infrastructure. These companies compete for renting the VANETs infrastructure to spread their advertisements. We partition the city map into different blocks, and consider a manager for all the blocks who is in charge of splitting the time between interested advertising companies. Each advertising company (AdC) is charged proportional to the allocated time. In order to find the best time splitting between AdCs, we propose a Stackelberg game scheme in which the block manager assigns the companies to the blocks and imposes the renting prices to different companies in order to maximize its own profit. Based on this, AdCs request the amount of time they desire to rent the infrastructure in order to maximize their utilities. To obtain the Stackelberg equilibrium of the game, a mixed integer nonlinear optimization problem is solved using the proposed optimal and sub-optimal algorithms. The simulation results demonstrate that the sub-optimal algorithm approaches the optimal one in performance with lower complexity.
Computational advertising has been studied to design efficient marketing strategies that maximize the number of acquired customers. In an increased competitive market, however, a market leader (a leader) requires the acquisition of new customers as w
Fog computing is a promising architecture to provide economic and low latency data services for future Internet of things (IoT)-based network systems. It relies on a set of low-power fog nodes that are close to the end users to offload the services o
It is known that the capacity of the intelligent reflecting surface (IRS) aided cellular network can be effectively improved by reflecting the incident signals from the transmitter in a low-cost passive reflecting way. Nevertheless, in the actual net
Mobile crowdsensing has shown a great potential to address large-scale data sensing problems by allocating sensing tasks to pervasive mobile users. The mobile users will participate in a crowdsensing platform if they can receive satisfactory reward.
It is known that the capacity of the intelligent reflecting surface (IRS) aided cellular network can be effectively improved by reflecting the incident signals from the transmitter in a low-cost passive reflecting way. In this paper, we study the ado