ترغب بنشر مسار تعليمي؟ اضغط هنا

Empirical estimates of the Na-O anti-correlation in 95 Galactic globular clusters

102   0   0.0 ( 0 )
 نشر من قبل Eugenio Carretta
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Eugenio Carretta




اسأل ChatGPT حول البحث

Large star-to-star abundance variations are direct evidence of multiple stellar populations in Galactic globular clusters (GCs). The main and most widespread chemical signature is the anti-correlation of the stellar Na and O abundances. The interquartile range (IQR) of the [O/Na] ratio is well suited to quantifying the extent of the anti-correlation and to probe its links to global cluster parameters. However, since it is quite time consuming to obtain precise abundances from spectroscopy for large samples of stars in GCs, here we show empirical calibrations of IQR[O/Na] based on the O, Na abundances homogeneously derived from more than 2000 red giants in 22 GCs in our FLAMES survey. We find a statistically robust bivariate correlation of IQR as a function of the total luminosity (a proxy for mass) and cluster concentration c. Calibrated and observed values lie along the identity line when a term accounting for the horizontal branch (HB) morphology is added to the calibration, from which we obtained empirical values for 95 GCs. Spreads in proton-capture elements O and Na are found for all GCs in the luminosity range from Mv=-3.76 to Mv=-9.98. This calibration reproduces in a self-consistent picture the link of abundance variations in light elements with the He enhancements and its effect on the stellar distribution on the HB. We show that the spreads in light elements seem already to be dependent on the initial GC masses. The dependence of IQR on structural parameters stems from the well known correlation between c and Mv, which is likely to be of primordial origin. Empirical estimates can be used to extend our investigation of multiple stellar populations to GCs in external galaxies, up to M31, where even integrated light spectroscopy may currently provide only a hint of such a phenomenon.



قيم البحث

اقرأ أيضاً

We use Gaia-ESO Survey iDR4 data to explore the Mg-Al anti-correlation in globular clusters, that were observed as calibrators, as a demonstration of the quality of Gaia-ESO Survey data and analysis. The results compare well with the available litera ture, within 0.1 dex or less, after a small (compared to the internal spreads) offset between the UVES and the GIRAFFE data of 0.10-0.15 dex was taken into account. In particular, we present for the first time data for NGC 5927, one of the most metal-rich globular clusters studied in the literature so far with [Fe/H]=-0.49 dex, that was included to connect with the open cluster regime in the Gaia-ESO Survey internal calibration. The extent and shape of the Mg-Al anti-correlation provide strong constraints on the multiple population phenomenon in globular clusters. In particular, we studied the dependency of the Mg-Al anti-correlation extension with metallicity, present-day mass, and age of the clusters, using GES data in combination with a large set of homogenized literature measurements. We find a dependency with both metallicity and mass, that is evident when fitting for the two parameters simultaneously, but no significant dependency with age. We confirm that the Mg-Al anti-correlation is not seen in all clusters, but disappears for the less massive or most metal-rich ones. We also use our dataset to see whether a normal anti-correlation would explain the low [Mg/$alpha$] observed in some extragalactic globular clusters, but find that none of the clusters in our sample can reproduce it, and more extreme chemical compositions (like the one of NGC 2419) would be required. We conclude that GES iDR4 data already meet the requirements set by the main survey goals, and can be used to study in detail globular clusters even if the analysis procedures were not specifically designed for them.
In this article, we present a detailed chemical analysis of seven red giant members of NGC 6553 using high-resolution spectroscopy from VLT FLAMES. We obtained the stellar parameters (Teff, Log(g), vt, [Fe/H]) of these stars from the spectra, and we measured the chemical abundance for 20 elements, including light elements, iron-peak elements, alpha-elements and neutron-capture elements. The metallicities in our sample stars are consistent with a homogeneous distribution. We found a mean of [Fe/H]=-0.14+/-0.07 dex, in agreement with other studies. Using the alpha-elements Mg, Si, Ca and Ti we obtain the mean of [alpha/Fe]=0.11+/-0.05. We found a vertical relation between Na and O, characterized by a significant spread in Na and an almost non-existent spread in O. In fact, Na and Al are the only two light elements with a large intrinsic spread, which demonstrates the presence of Multiple Populations (MPs). An intrinsic spread in Mg is not detected in this study. The alpha, iron-peak and neutron capture elements show good agreement with the trend of the bulge field stars, indicating similar origin and evolution, in concordance with our previous studies for two other bulge GCs (NGC 6440 and NGC 6528).
Open clusters are historically regarded as single-aged stellar populations representative of star formation within the Galactic disk. Recent literature has questioned this view, based on discrepant Na abundances relative to the field, and concerns ab out the longevity of bound clusters contributing to a selection bias: perhaps long-lived open clusters are chemically different to the star formation events that contributed to the Galactic disk. We explore a large sample of high resolution Na, O, Ba & Eu abundances from the literature, homogenized as much as reasonable including accounting for NLTE effects, variations in analysis and choice of spectral lines. Compared to a template globular cluster and representative field stars, we find no significant abundance trends, confirming that the process producing the Na-O anti-correlation in globular clusters is not present in open clusters. Furthermore, previously reported Na-enhancement of open clusters is found to be an artefact of NLTE effects, with the open clusters matching a subset of chemically tagged field stars.
We use Hubble Space Telescope (HST) imaging from the ACS Treasury Survey to determine fits for single population isochrones of 69 Galactic globular clusters. Using robust Bayesian analysis techniques, we simultaneously determine ages, distances, abso rptions, and helium values for each cluster under the scenario of a single stellar population on model grids with solar ratio heavy element abundances. The set of cluster parameters is determined in a consistent and reproducible manner for all clusters using the Bayesian analysis suite BASE-9. Our results are used to re-visit the age-metallicity relation. We find correlations with helium and several other parameters such as metallicity, binary fraction, and proxies for cluster mass. The helium abundances of the clusters are also considered in the context of CNO abundances and the multiple population scenario.
The recent measurements of internal variations of helium in Galactic and extragalactic Globular Clusters (GCs) set binding constraints to the models of formation of Multiple Populations (MPs) in GCs, and gave rise, at the same time, to crucial questi ons related with the influence of the environment on MP formation as well as with the role played by GCs in the early galactic formation. We present the most recent estimates of helium enrichment in the main populations of a large sample of Galactic and extragalactic GCs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا