ترغب بنشر مسار تعليمي؟ اضغط هنا

The ACS Survey of Galactic Globular Clusters XIV: Bayesian Single-Population Analysis of 69 Globular Clusters

374   0   0.0 ( 0 )
 نشر من قبل R. Wagner-Kaiser
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use Hubble Space Telescope (HST) imaging from the ACS Treasury Survey to determine fits for single population isochrones of 69 Galactic globular clusters. Using robust Bayesian analysis techniques, we simultaneously determine ages, distances, absorptions, and helium values for each cluster under the scenario of a single stellar population on model grids with solar ratio heavy element abundances. The set of cluster parameters is determined in a consistent and reproducible manner for all clusters using the Bayesian analysis suite BASE-9. Our results are used to re-visit the age-metallicity relation. We find correlations with helium and several other parameters such as metallicity, binary fraction, and proxies for cluster mass. The helium abundances of the clusters are also considered in the context of CNO abundances and the multiple population scenario.

قيم البحث

اقرأ أيضاً

We use Cycle 21 Hubble Space Telescope (HST) observations and HST archival ACS Treasury observations of 30 Galactic Globular Clusters to characterize two distinct stellar populations. A sophisticated Bayesian technique is employed to simultaneously s ample the joint posterior distribution of age, distance, and extinction for each cluster, as well as unique helium values for two populations within each cluster and the relative proportion of those populations. We find the helium differences among the two populations in the clusters fall in the range of ~0.04 to 0.11. Because adequate models varying in CNO are not presently available, we view these spreads as upper limits and present them with statistical rather than observational uncertainties. Evidence supports previous studies suggesting an increase in helium content concurrent with increasing mass of the cluster and also find that the proportion of the first population of stars increases with mass as well. Our results are examined in the context of proposed globular cluster formation scenarios. Additionally, we leverage our Bayesian technique to shed light on inconsistencies between the theoretical models and the observed data.
We have performed a census of the UV-bright population in 78 globular clusters using wide-field UV telescopes. This population includes a variety of phases of post-horizontal branch (HB) evolution, including hot post-asymptotic giant branch (AGB) sta rs, and post-early AGB stars. There are indications that old stellar systems like globular clusters produce fewer post-(early) AGB stars than currently predicted by evolutionary models, but observations are still scarce. We obtained FORS2 spectroscopy of eleven of these UV-selected objects (covering a range of -2.3<[Fe/H]<-1.0), which we (re-)analysed together with previously observed data. We used model atmospheres of different metallicities, including super-solar ones. Where possible, we verified our atmospheric parameters using UV spectrophotometry and searched for metal lines in the optical spectra. We calculated evolutionary sequences for four metallicity regimes and used them together with information about the HB morphology of the globular clusters to estimate the expected numbers of post-AGB stars. Seven of the eleven new luminous UV-bright stars are post-AGB or post-early AGB stars, two are evolving away from the HB, one is a foreground white dwarf, and one is a white dwarf merger. So spectroscopy is clearly required to identify the evolutionary status of hot UV-bright stars. For hotter stars, metal-rich model spectra are required to reproduce their optical and UV spectra, which may affect the flux contribution of hot post-AGB stars to the UV spectra of evolved populations. Adding published information on other hot UV-bright stars in globular clusters, we find that the number of observed hot post-AGB stars generally agrees with the predicted values, although the numbers are still low.
Only four globular cluster planetary nebulae (GCPN) are known so far in the Milky Way. About 50 new globular clusters have been recently discovered towards the Galactic bulge. We present a search for planetary nebulae within 3 arcmin of the new globu lar clusters, revealing the identification of new candidate GCPN. These possible associations are PN SB 2 with the GC Minni 06, PN G354.9-02.8 with the GC Minni 11, PN G356.8-03.6 with the GC Minni 28, and PN Pe 2-11 with the GC Minni 31. We discard PN H 2-14 located well within the projected tidal radius of the new globular cluster FSR1758 because they have different measured radial velocities. These are interesting objects that need follow-up observations (especially radial velocities) in order to confirm membership, and to measure their physical properties in detail. If confirmed, this would double the total number of Galactic GCPN.
We use observations from the ACS study of Galactic globular clusters to investigate the spatial distribution of the inner regions of the disrupting Sagittarius dwarf spheroidal galaxy (Sgr). We combine previously published analyses of four Sgr member clusters located near or in the Sgr core (M54, Arp 2, Terzan 7 and Terzan 8) with a new analysis of diffuse Sgr material identified in the background of five low-latitude Galactic bulge clusters (NGC 6624, 6637, 6652, 6681 and 6809) observed as part of the ACS survey. By comparing the bulge cluster CMDs to our previous analysis of the M54/Sgr core, we estimate distances to these background features. The combined data from four Sgr member clusters and five Sgr background features provides nine independent measures of the Sgr distance and, as a group, provide uniformly measured and calibrated probes of different parts of the inner regions of Sgr spanning twenty degrees over the face of the disrupting dwarf. This allows us, for the first time, to constrain the three dimensional orientation of Sgrs disrupting core and globular cluster system and compare that orientation to the predictions of an N-body model of tidal disruption. The density and distance of Sgr debris is consistent with models that favor a relatively high Sgr core mass and a slightly greater distance (28-30 kpc, with a mean of 29.4 kpc). Our analysis also suggests that M54 is in the foreground of Sgr by ~2 kpc, projected on the center of the Sgr dSph. While this would imply a remarkable alignment of the cluster and the Sgr nucleus along the line of sight, we can not identify any systematic effect in our analysis that would falsely create the measured 2 kpc separation. Finally, we find that the cluster Terzan 7 has the most discrepant distance (25 kpc) among the four Sgr core clusters, which may suggest a different dynamical history than the other Sgr core clusters.
We analyze a large sample of 885 GCs giants from the APOGEE survey. We used the Cannon results to separate the red giant branch and the asymptotic giant branch stars, not only allowing for a refinement of surface gravity from isochrones, but also pro viding an independent H-band spectroscopic method to distinguish stellar evolutionary status in clusters. We then use the BACCHUS code to derive metallicity, microturbulence, acroturbulence and many light-element abundances as well as the neutron-capture elements Nd and Ce for the first time from the APOGEE GCs data. Our independent analysis helped us to diagnose issues regarding the standard analysis of the APOGEE DR14 for low-metallicity GC stars. Furthermore, while we confirm most of the known correlations and anti-correlation trends (Na-O, Mg-Al,C-N), we discover that some stars within our most metal-poor clusters show an extreme Mg depletion and some Si enhancement but at the same time show some relative Al depletion, displaying a turnover in the Mg-Al diagram. These stars suggest that Al has been partially depleted in their progenitors by very hot proton-capture nucleosynthetic processes. Furthermore, we attempted to quantitatively correlate the spread of Al abundances with the global properties of GCs. We find an anti-correlation of the Al spread against clusters metallicity and luminosity, but the data do not allow to find clear evidence of a dependence of N against metallicity in the more metal-poor clusters. Large and homogeneously analyzed samples from on-going spectroscopic surveys unveil unseen chemical details for many clusters, including a turnover in the Mg-Al anti-correlation, thus yielding new constrains for GCs formation evolution models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا