ترغب بنشر مسار تعليمي؟ اضغط هنا

THz emission from Co/Pt bilayers with varied roughness, crystal structure, and interface intermixing

65   0   0.0 ( 0 )
 نشر من قبل Guanqiao Li
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Femtosecond laser excitation of a Co/Pt bilayer results in the efficient emission of picosecond THz pulses. Two known mechanisms for generating THz emission are spin-polarized currents through a Co/Pt interface, resulting in helicity-independent electric currents in the Pt layer due to the inverse spin-Hall effect and helicity-dependent electric currents at the Co/Pt interface due to the inverse spin-orbit torque effect. Here we explore how roughness, crystal structure and intermixing at the Co/Pt interface affect the efficiency of the THz emission. In particular, we varied the roughness of the interface, in the range of 0.1-0.4 nm, by tuning the deposition pressure conditions during the fabrication of the Co/Pt bilayers. To control the intermixing at the Co/Pt interface a 1-2 nm thick CoxPt1-x alloy spacer layer was introduced with various compositions of Co and Pt. Finally, the crystal structure of Co was varied from face centered cubic to hexagonal close packed. Our study shows that the roughness of the interface is of crucial importance for the efficiency of helicity-dependent THz emission induced by femtosecond laser pulses. However, it is puzzling that intermixing while strongly enhancing the helicity-independent THz emission had no effect on the helicity-dependent THz emission which is suppressed and similar to the smooth interfaces.



قيم البحث

اقرأ أيضاً

The ultrashort laser excitation of Co/Pt magnetic heterostructures can effectively generate spin and charge currents at the interfaces between magnetic and nonmagnetic layers. The direction of these photocurrents can be controlled by the helicity of the circularly polarized laser light and an external magnetic field. Here, we employ THz time-domain spectroscopy to investigate further the role of interfaces in these photo-galvanic phenomena. In particular, the effects of either Cu or ZnO interlayers on the photocurrents in Co/X/Pt (X = Cu, ZnO) have been studied by varying the thickness of the interlayers up to 5 nm. The results are discussed in terms of spin-diffusion phenomena and interfacial spin-orbit torque.
189 - K. K. Meng , J. K. Chen , J. Miao 2020
Nonreciprocal charge transport, which is frequently termed as electrical magnetochiral anisotropy (EMCA) in chiral conductors, touches the most important elements of modern condensed matter physics. Here, we have investigated the EMCA in Pt/PtMnGa (P MG) bilayers with the assitance of nonequilibrium fluctuation theorems. Large EMCA in the Pt/PMG bilayers can be attributed to nonreciprocal response of an interface-driven chiral transport channel. Due to the presence of large charge fluctuations for small current region, higher order EMCA coefficients should be added and they are all functions of current. A combination of asymmetrical electron scattering and spin-dependent scattering furnish the PMG thickness dependent chiral transport behaviors in Pt/PMG bilayers. The dramatically enhanced anomalous Hall angle of PMG further demonstrates the modified surface state properties by strong spin-orbit coupling.
We investigate the correlation between roughness, remanence and coercivity in Co/Ni films grown on Cu seed layers of varying thickness. Increasing the Cu seed layer thickness of Ta/Cu/8x[Co/Ni] thin films increases the roughness of the films. In-plan e magnetization loops show that both the remanance and coercivity increase with increasing seed layer roughness. Polar Kerr microscopy and magnetic force microscopy reveal that the domain density also increases with roughness. Finite element micromagnetic simulations performed on structures with periodically modulated surfaces provide further insight. They confirm the connection between domain density and roughness, and identify the microsocpic structure of the domain walls as the source of the increased remanence in rough films. The simulations predict that the character of the domain walls changes from Bloch-like in smooth films to Neel-like for rougher films.
We investigate the THz emission characteristics of ferromagnetic/non-magnetic metallic heterostructures, focusing on thin Fe/Pt bilayers. In particular, we report on the impact of optimized crystal growth of the epitaxial Fe layers on the THz emissio n amplitude and spectral bandwidth. We demonstrate an enhancement of the emitted intensity along with an expansion of the emission bandwidth. Both are related to reduced spin scattering and higher interface transmission. Our work provides a pathway for devicing optimal spintronic THz emitters based on epitaxial Fe. It also highlights how THz emission measurements can be utilized to characterize the changes in out-of-equilibrium spin current dynamics in metallic heterostructures, driven by subtle structural refinement.
323 - Johannes Mendil 2019
We report on the structure, magnetization, magnetic anisotropy, and domain morphology of ultrathin yttrium iron garnet (YIG)/Pt films with thickness ranging from 3 to 90 nm. We find that the saturation magnetization is close to the bulk value in the thickest films and decreases towards low thickness with a strong reduction below 10 nm. We characterize the magnetic anisotropy by measuring the transverse spin Hall magnetoresistance as a function of applied field. Our results reveal strong easy plane anisotropy fields of the order of 50-100 mT, which add to the demagnetizing field, as well as weaker in-plane uniaxial anisotropy ranging from 10 to 100 $mu$T. The in-plane easy axis direction changes with thickness, but presents also significant fluctuations among samples with the same thickness grown on the same substrate. X-ray photoelectron emission microscopy reveals the formation of zigzag magnetic domains in YIG films thicker than 10 nm, which have dimensions larger than several 100 $mu$m and are separated by achiral N{e}el-type domain walls. Smaller domains characterized by interspersed elongated features are found in YIG films thinner than 10 nm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا