ﻻ يوجد ملخص باللغة العربية
Femtosecond laser excitation of a Co/Pt bilayer results in the efficient emission of picosecond THz pulses. Two known mechanisms for generating THz emission are spin-polarized currents through a Co/Pt interface, resulting in helicity-independent electric currents in the Pt layer due to the inverse spin-Hall effect and helicity-dependent electric currents at the Co/Pt interface due to the inverse spin-orbit torque effect. Here we explore how roughness, crystal structure and intermixing at the Co/Pt interface affect the efficiency of the THz emission. In particular, we varied the roughness of the interface, in the range of 0.1-0.4 nm, by tuning the deposition pressure conditions during the fabrication of the Co/Pt bilayers. To control the intermixing at the Co/Pt interface a 1-2 nm thick CoxPt1-x alloy spacer layer was introduced with various compositions of Co and Pt. Finally, the crystal structure of Co was varied from face centered cubic to hexagonal close packed. Our study shows that the roughness of the interface is of crucial importance for the efficiency of helicity-dependent THz emission induced by femtosecond laser pulses. However, it is puzzling that intermixing while strongly enhancing the helicity-independent THz emission had no effect on the helicity-dependent THz emission which is suppressed and similar to the smooth interfaces.
The ultrashort laser excitation of Co/Pt magnetic heterostructures can effectively generate spin and charge currents at the interfaces between magnetic and nonmagnetic layers. The direction of these photocurrents can be controlled by the helicity of
Nonreciprocal charge transport, which is frequently termed as electrical magnetochiral anisotropy (EMCA) in chiral conductors, touches the most important elements of modern condensed matter physics. Here, we have investigated the EMCA in Pt/PtMnGa (P
We investigate the correlation between roughness, remanence and coercivity in Co/Ni films grown on Cu seed layers of varying thickness. Increasing the Cu seed layer thickness of Ta/Cu/8x[Co/Ni] thin films increases the roughness of the films. In-plan
We investigate the THz emission characteristics of ferromagnetic/non-magnetic metallic heterostructures, focusing on thin Fe/Pt bilayers. In particular, we report on the impact of optimized crystal growth of the epitaxial Fe layers on the THz emissio
We report on the structure, magnetization, magnetic anisotropy, and domain morphology of ultrathin yttrium iron garnet (YIG)/Pt films with thickness ranging from 3 to 90 nm. We find that the saturation magnetization is close to the bulk value in the