ترغب بنشر مسار تعليمي؟ اضغط هنا

SleepNet: Automated Sleep Analysis via Dense Convolutional Neural Network Using Physiological Time Series

83   0   0.0 ( 0 )
 نشر من قبل Bahareh Pourbabaee
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, a dense recurrent convolutional neural network (DRCNN) was constructed to detect sleep disorders including arousal, apnea and hypopnea using Polysomnography (PSG) measurement channels provided in the 2018 Physionet challenge database. Our model structure is composed of multiple dense convolutional units (DCU) followed by a bidirectional long-short term memory (LSTM) layer followed by a softmax output layer. The sleep events including sleep stages, arousal regions and multiple types of apnea and hypopnea are manually annotated by experts which enables us to train our proposed network using a multi-task learning mechanism. Three binary cross-entropy loss functions corresponding to sleep/wake, target arousal and apnea-hypopnea/normal detection tasks are summed up to generate our overall network loss function that is optimized using the Adam method. Our model performance was evaluated using two metrics: the area under the precision-recall curve (AUPRC) and the area under the receiver operating characteristic curve (AUROC). To measure our model generalization, 4-fold cross-validation was also performed. For training, our model was applied to full night recording data. Finally, the average AUPRC and AUROC values associated with the arousal detection task were 0.505 and 0.922, respectively on our testing dataset. An ensemble of four models trained on different data folds improved the AUPRC and AUROC to 0.543 and 0.931, respectively. Our proposed algorithm achieved the first place in the official stage of the 2018 Physionet challenge for detecting sleep arousals with AUPRC of 0.54 on the blind testing dataset.



قيم البحث

اقرأ أيضاً

Here we introduce a new model of natural textures based on the feature spaces of convolutional neural networks optimised for object recognition. Samples from the model are of high perceptual quality demonstrating the generative power of neural networ ks trained in a purely discriminative fashion. Within the model, textures are represented by the correlations between feature maps in several layers of the network. We show that across layers the texture representations increasingly capture the statistical properties of natural images while making object information more and more explicit. The model provides a new tool to generate stimuli for neuroscience and might offer insights into the deep representations learned by convolutional neural networks.
Supervised machine learning applications in the health domain often face the problem of insufficient training datasets. The quantity of labelled data is small due to privacy concerns and the cost of data acquisition and labelling by a medical expert. Furthermore, it is quite common that collected data are unbalanced and getting enough data to personalize models for individuals is very expensive or even infeasible. This paper addresses these problems by (1) designing a recurrent Generative Adversarial Network to generate realistic synthetic data and to augment the original dataset, (2) enabling the generation of balanced datasets based on heavily unbalanced dataset, and (3) to control the data generation in such a way that the generated data resembles data from specific individuals. We apply these solutions for sleep apnea detection and study in the evaluation the performance of four well-known techniques, i.e., K-Nearest Neighbour, Random Forest, Multi-Layer Perceptron, and Support Vector Machine. All classifiers exhibit in the experiments a consistent increase in sensitivity and a kappa statistic increase by between 0.007 and 0.182.
The monitoring and management of numerous and diverse time series data at Alibaba Group calls for an effective and scalable time series anomaly detection service. In this paper, we propose RobustTAD, a Robust Time series Anomaly Detection framework b y integrating robust seasonal-trend decomposition and convolutional neural network for time series data. The seasonal-trend decomposition can effectively handle complicated patterns in time series, and meanwhile significantly simplifies the architecture of the neural network, which is an encoder-decoder architecture with skip connections. This architecture can effectively capture the multi-scale information from time series, which is very useful in anomaly detection. Due to the limited labeled data in time series anomaly detection, we systematically investigate data augmentation methods in both time and frequency domains. We also introduce label-based weight and value-based weight in the loss function by utilizing the unbalanced nature of the time series anomaly detection problem. Compared with the widely used forecasting-based anomaly detection algorithms, decomposition-based algorithms, traditional statistical algorithms, as well as recent neural network based algorithms, RobustTAD performs significantly better on public benchmark datasets. It is deployed as a public online service and widely adopted in different business scenarios at Alibaba Group.
Fluctuations in heart rate are intimately tied to changes in the physiological state of the organism. We examine and exploit this relationship by classifying a human subjects wake/sleep status using his instantaneous heart rate (IHR) series. We use a convolutional neural network (CNN) to build features from the IHR series extracted from a whole-night electrocardiogram (ECG) and predict every 30 seconds whether the subject is awake or asleep. Our training database consists of 56 normal subjects, and we consider three different databases for validation; one is private, and two are public with different races and apnea severities. On our private database of 27 subjects, our accuracy, sensitivity, specificity, and AUC values for predicting the wake stage are 83.1%, 52.4%, 89.4%, and 0.83, respectively. Validation performance is similar on our two public databases. When we use the photoplethysmography instead of the ECG to obtain the IHR series, the performance is also comparable. A robustness check is carried out to confirm the obtained performance statistics. This result advocates for an effective and scalable method for recognizing changes in physiological state using non-invasive heart rate monitoring. The CNN model adaptively quantifies IHR fluctuation as well as its location in time and is suitable for differentiating between the wake and sleep stages.
The driving force behind convolutional networks - the most successful deep learning architecture to date, is their expressive power. Despite its wide acceptance and vast empirical evidence, formal analyses supporting this belief are scarce. The prima ry notions for formally reasoning about expressiveness are efficiency and inductive bias. Expressive efficiency refers to the ability of a network architecture to realize functions that require an alternative architecture to be much larger. Inductive bias refers to the prioritization of some functions over others given prior knowledge regarding a task at hand. In this paper we overview a series of works written by the authors, that through an equivalence to hierarchical tensor decompositions, analyze the expressive efficiency and inductive bias of various convolutional network architectural features (depth, width, strides and more). The results presented shed light on the demonstrated effectiveness of convolutional networks, and in addition, provide new tools for network design.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا