ترغب بنشر مسار تعليمي؟ اضغط هنا

High Field Anomalies of Equilibrium and Ultrafast Magnetism in Rare-Earth-Transition Metal Ferrimagnets

124   0   0.0 ( 0 )
 نشر من قبل Anna Pogrebna
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magneto-optical spectroscopy in fields up to 30 Tesla reveals anomalies in the equilibrium and ultrafast magnetic properties of the ferrimagnetic rare-earth-transition metal alloy TbFeCo. In particular, in the vicinity of the magnetization compensation temperature, each of the magnetizations of the antiferromagnetically coupled Tb and FeCo sublattices show triple hysteresis loops. Contrary to state-of-the-art theory, which explains such loops by sample inhomogeneities, here we show that they are an intrinsic property of the rare-earth ferrimagnets. Assuming that the rare-earth ions are paramagnetic and have a non-zero orbital momentum in the ground state and, therefore, a large magnetic anisotropy, we are able to reproduce the experimentally observed behavior in equilibrium. The same theory is also able to describe the experimentally observed critical slowdown of the spin dynamics in the vicinity of the magnetization compensation temperature, emphasizing the role played by the orbital momentum in static and ultrafast magnetism of ferrimagnets.



قيم البحث

اقرأ أيضاً

Magnetocrystalline anisotropy, the microscopic origin of permanent magnetism, is often explained in terms of ferromagnets. However, the best performing permanent magnets based on rare earths and transition metals (RE-TM) are in fact ferrimagnets, con sisting of a number of magnetic sublattices. Here we show how a naive calculation of the magnetocrystalline anisotropy of the classic RE-TM ferrimagnet GdCo$_5$ gives numbers which are too large at 0 K and exhibit the wrong temperature dependence. We solve this problem by introducing a first-principles approach to calculate temperature-dependent magnetization vs. field (FPMVB) curves, mirroring the experiments actually used to determine the anisotropy. We pair our calculations with measurements on a recently-grown single crystal of GdCo$_5$, and find excellent agreement. The FPMVB approach demonstrates a new level of sophistication in the use of first-principles calculations to understand RE-TM magnets.
Crystal-field (CF) effects on the rare-earth (RE) ions in ferrimagnetic intermetallics NdCo$_5$ and TbCo$_5$ are evaluated using an ab initio density functional + dynamical mean-field theory approach in conjunction with a quasi-atomic approximation f or on-site electronic correlations on the localized 4$f$ shell. The study reveals an important role of the high-order sectoral harmonic component of the CF in the magnetism of RECo$_5$ intermetallics. An unexpectedly large value is computed in the both systems for the corresponding crystal-field parameter (CFP) $A_6^6 langle r^6 rangle$, far beyond what one would expect from only electrostatic contributions. It allows solving the enigma of the non-saturation of zero-temperature Nd magnetic moments in NdCo$_5$ along its easy axis in the Co exchange field. This unsaturated state had been previously found out from magnetization distribution probed by polarised neutron elastic scattering but had so far remained theoretically unexplained. The easy plane magnetic anisotropy of Nd in NdCo$_5$ is strongly enhanced by the large value of $A_6^6langle r^6 rangle$. Counter-intuitively, the polar dependence of anisotropy energy within the easy plane remains rather small. The easy plane magnetic anisotropy of Nd is reinforced up to high temperatures, which is explained through $J$-mixing effects. The calculated ab initio anisotropy constants of NdCo$_5$ and their temperature dependence are in quantitative agreement with experiment. Unlike NdCo$_5$, the $A_6^6 langle r^6 rangle$ CFP has negligible effects on the Tb magnetism in TbCo$_5$ suggesting that its impact on the RE magnetism is ion-specific across the RECo$_5$ series. The origin of its large value is the hybridization of RE and Co states in a hexagonally coordinated local environment of the RE ion in RECo$_5$ intermetallics.
112 - Ming An , Shuai Dong 2020
Since the discovery of graphene, two-dimensional materials with atomic level thickness have rapidly grown to be a prosperous field of physical science with interdisciplinary interests, for their fascinating properties and broad applications. Very rec ently, the experimental observation of ferromagnetism in Cr$_2$Ge$_2$Te$_6$ bilayer and CrI$_3$ monolayer opened a door to pursuit long-absent intrinsic magnetic orders in two-dimensional materials. Meanwhile, the ferroelectricity was also experimentally found in SnTe monolayer and CuInP$_2$S$_6$ few layers. The emergence of these ferroic orders in the two-dimensional limit not only brings new challenges to our physical knowledge, but also provides more functionalities for potential applications. Among various two-dimensional ferroic ordered materials, transition/rare-earth metal halides and their derivants are very common. In this Research Update, based on transition/rare-earth metal halides, the physics of various ferroic orders in two-dimensional will be illustrated. The potential applications based on their magnetic and polar properties will also be discussed.
We present an investigation into the intrinsic magnetic properties of the compounds YCo5 and GdCo5, members of the RETM5 class of permanent magnets (RE = rare earth, TM = transition metal). Focusing on Y and Gd provides direct insight into both the T M magnetization and RE-TM interactions without the complication of strong crystal field effects. We synthesize single crystals of YCo5 and GdCo5 using the optical floating zone technique and measure the magnetization from liquid helium temperatures up to 800 K. These measurements are interpreted through calculations based on a Greens function formulation of density-functional theory, treating the thermal disorder of the local magnetic moments within the coherent potential approximation. The rise in the magnetization of GdCo5 with temperature is shown to arise from a faster disordering of the Gd magnetic moments compared to the antiferromagnetically aligned Co sublattice. We use the calculations to analyze the different Curie temperatures of the compounds and also compare the molecular (Weiss) fields at the RE site with previously published neutron scattering experiments. To gain further insight into the RE-TM interactions, we perform substitutional doping on the TM site, studying the compounds RECo4.5Ni0.5, RECo4Ni, and RECo4.5Fe0.5. Both our calculations and experiments on powdered samples find an increased/decreased magnetization with Fe/Ni doping, respectively. The calculations further reveal a pronounced dependence on the location of the dopant atoms of both the Curie temperatures and the Weiss field at the RE site.
We present a study of the magnetoresistance, the specific heat and the magnetocaloric effect of equiatomic $RET$Mg intermetallics with $RE = {rm La}$, Eu, Gd, Yb and $T = {rm Ag}$, Au and of GdAuIn. Depending on the composition these compounds are pa ramagnetic ($RE = {rm La}$, Yb) or they order either ferro- or antiferromagnetically with transition temperatures ranging from about 13 to 81 K. All of them are metallic, but the resistivity varies over 3 orders of magnitude. The magnetic order causes a strong decrease of the resistivity and around the ordering temperature we find pronounced magnetoresistance effects. The magnetic ordering also leads to well-defined anomalies in the specific heat. An analysis of the entropy change leads to the conclusions that generally the magnetic transition can be described by an ordering of localized $S=7/2$ moments arising from the half-filled $4f^7$ shells of Eu$^{2+}$ or Gd$^{3+}$. However, for GdAgMg we find clear evidence for two phase transitions indicating that the magnetic ordering sets in partially below about 125 K and is completed via an almost first-order transition at 39 K. The magnetocaloric effect is weak for the antiferromagnets and rather pronounced for the ferromagnets for low magnetic fields around the zero-field Curie temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا