ﻻ يوجد ملخص باللغة العربية
We present an investigation into the intrinsic magnetic properties of the compounds YCo5 and GdCo5, members of the RETM5 class of permanent magnets (RE = rare earth, TM = transition metal). Focusing on Y and Gd provides direct insight into both the TM magnetization and RE-TM interactions without the complication of strong crystal field effects. We synthesize single crystals of YCo5 and GdCo5 using the optical floating zone technique and measure the magnetization from liquid helium temperatures up to 800 K. These measurements are interpreted through calculations based on a Greens function formulation of density-functional theory, treating the thermal disorder of the local magnetic moments within the coherent potential approximation. The rise in the magnetization of GdCo5 with temperature is shown to arise from a faster disordering of the Gd magnetic moments compared to the antiferromagnetically aligned Co sublattice. We use the calculations to analyze the different Curie temperatures of the compounds and also compare the molecular (Weiss) fields at the RE site with previously published neutron scattering experiments. To gain further insight into the RE-TM interactions, we perform substitutional doping on the TM site, studying the compounds RECo4.5Ni0.5, RECo4Ni, and RECo4.5Fe0.5. Both our calculations and experiments on powdered samples find an increased/decreased magnetization with Fe/Ni doping, respectively. The calculations further reveal a pronounced dependence on the location of the dopant atoms of both the Curie temperatures and the Weiss field at the RE site.
Magnetocrystalline anisotropy, the microscopic origin of permanent magnetism, is often explained in terms of ferromagnets. However, the best performing permanent magnets based on rare earths and transition metals (RE-TM) are in fact ferrimagnets, con
Since the discovery of graphene, two-dimensional materials with atomic level thickness have rapidly grown to be a prosperous field of physical science with interdisciplinary interests, for their fascinating properties and broad applications. Very rec
The magnetic properties of materials based on two-dimensional transition-metal dichalcogenides (TMDC) have been investigated by means of first-principles DFT calculations, namely Fe-intercalated bulk Fe$_{1/4}$TaS$_2$ compounds as well as TMDC monola
We combined photoelemission spectroscopy with first-principle calculations to investigate structural and electronic properties of SrTiO$_{3}$ doped with Ni impurities. In SrTiO$_{3}$ polycrystalline thin films, grown by magnetron sputtering, the mean
Magneto-optical spectroscopy in fields up to 30 Tesla reveals anomalies in the equilibrium and ultrafast magnetic properties of the ferrimagnetic rare-earth-transition metal alloy TbFeCo. In particular, in the vicinity of the magnetization compensati