ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of Electron Irradiation on the Transport and Field Emission Properties of Few-Layer MoS2 Field Effect Transistors

245   0   0.0 ( 0 )
 نشر من قبل Filippo Giubileo Dr
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electrical characterization of few-layer MoS2 based field effect transistors with Ti/Au electrodes is performed in the vacuum chamber of a scanning electron microscope in order to study the effects of electron beam irradiation on the transport properties of the device. A negative threshold voltage shift and a carrier mobility enhancement is observed and explained in terms of positive charges trapped in the SiO2 gate oxide, during the irradiation. The transistor channel current is increased up to three order of magnitudes after the exposure to an irradiation dose of 100e-/nm2. Finally, a complete field emission characterization of the MoS2 flake, achieving emission stability for several hours and a minimum turn-on field of about 20 V/um with a field enhancement factor of about 500 at anode-cathode distance of 1.5um, demonstrates the suitability of few-layer MoS2 as two-dimensional emitting surface for cold-cathode applications.

قيم البحث

اقرأ أيضاً

Palladium diselenide (PdSe2) is a recently isolated layered material that has attracted a lot of interest for the pentagonal structure, the air stability and the electrical properties largely tunable by the number of layers. In this work, PdSe2 is us ed in the form of multilayer as the channel of back-gate field-effect transistors, which are studied under repeated electron irradiations. Source-drain Pd leads enable contacts with resistance below 350 kOhm um. The transistors exhibit a prevailing n-type conduction in high vacuum, which reversibly turns into ambipolar electric transport at atmospheric pressure. Irradiation by 10 keV electrons suppresses the channel conductance and promptly transforms the device from n-type to p-type. An electron fluence as low as 160 e-/nm2 dramatically change the transistor behavior demonstrating a high sensitivity of PdSe2 to electron irradiation. The sensitivity is lost after few exposures, that is a saturation condition is reached for fluence higher than 4000 e-/nm2. The damage induced by high electron fluence is irreversible as the device persist in the radiation-modified state for several hours, if kept in vacuum and at room temperature. With the support of numerical simulation, we explain such a behavior by electron-induced Se atom vacancy formation and charge trapping in slow trap states at the Si/SiO_2 interface.
We study the effects of low-energy electron beam irradiation up to 10 keV on graphene based field effect transistors. We fabricate metallic bilayer electrodes to contact mono- and bi-layer graphene flakes on SiO$_2$, obtaining specific contact resist ivity $rho_c simeq 19 kOmega mu m^2$ and carrier mobility as high as 4000 cm$^2$V$^{-1}$s$^{-1}$. By using a highly doped p-Si/SiO$_2$ substrate as back gate, we analyze the transport properties of the device and the dependence on the pressure and on the electron bombardment. We demonstrate that low energy irradiation is detrimental on the transistor current capability, resulting in an increase of the contact resistance and a reduction of the carrier mobility even at electron doses as low as 30 $e^-/nm^2$. We also show that the irradiated devices recover by returning to their pristine state after few repeated electrical measurements.
193 - Yabin Chen , Feng Ke , Penghong Ci 2016
Hydrostatic pressure applied using diamond anvil cells (DAC) has been widely explored to modulate physical properties of materials by tuning their lattice degree of freedom. Independently, electrical field is able to tune the electronic degree of fre edom of functional materials via, for example, the field-effect transistor (FET) configuration. Combining these two orthogonal approaches would allow discovery of new physical properties and phases going beyond the known phase space. Such experiments are, however, technically challenging and have not been demonstrated. Herein, we report a feasible strategy to prepare and measure FETs in a DAC by lithographically patterning the nanodevices onto the diamond culet. Multiple-terminal FETs were fabricated in the DAC using few-layer MoS2 and BN as the channel semiconductor and dielectric layer, respectively. It is found that the mobility, conductance, carrier concentration, and contact conductance of MoS2 can all be significantly enhanced with pressure. We expect that the approach could enable unprecedented ways to explore new phases and properties of materials under coupled mechano-electrostatic modulation.
For the first time, n-type few-layer MoS2 field-effect transistors with graphene/Ti as the hetero-contacts have been fabricated, showing more than 160 mA/mm drain current at 1 {mu}m gate length with an on-off current ratio of 107. The enhanced electr ical characteristic is confirmed in a nearly 2.1 times improvement in on-resistance and a 3.3 times improvement in contact resistance with hetero-contacts compared to the MoS2 FETs without graphene contact layer. Temperature dependent study on MoS2/graphene hetero-contacts has been also performed, still unveiling its Schottky contact nature. Transfer length method and a devised I-V method have been introduced to study the contact resistance and Schottky barrier height in MoS2/graphene /metal hetero-contacts structure.
We report the fabrication of ionic liquid (IL) gated field-effect transistors (FETs) consisting of bilayer and few-layer MoS2. Our transport measurements indicate that the electron mobility about 60 cm2V-1s-1 at 250 K in ionic liquid gated devices ex ceeds significantly that of comparable back-gated devices. IL-FETs display a mobility increase from about 100 cm2V-1s-1 at 180 K to about 220 cm2V-1s-1 at 77 K in good agreement with the true channel mobility determined from four-terminal measurements, ambipolar behavior with a high ON/OFF ratio >107 (104) for electrons (holes), and a near ideal sub-threshold swing of about 50 mV/dec at 250 K. We attribute the observed performance enhancement, specifically the increased carrier mobility that is limited by phonons, to the reduction of the Schottky barrier at the source and drain electrode by band bending caused by the ultrathin ionic-liquid dielectric layer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا