ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantitative Measure of Memory Loss in Complex Spatio-Temporal Systems

405   0   0.0 ( 0 )
 نشر من قبل Miroslav Kramar
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To make progress in understanding the issue of memory loss and history dependence in evolving complex systems, we consider the mixing rate that specifies how fast the future states become independent of the initial condition. We propose a simple measure for assessing the mixing rate that can be directly applied to experimental data observed in any metric space $X$. For a compact phase space $X subset R^M$, we prove the following statement. If the underlying dynamical system has a unique physical measure and its dynamics is strongly mixing with respect to this measure, then our method provides an upper bound of the mixing rate. We employ our method to analyze memory loss for the system of slowly sheared granular particles with a small inertial number $I$. The shear is induced by the moving walls as well as by the linear motion of the support surface that ensures approximately linear shear throughout the sample. We show that even if $I$ is kept fixed, the rate of memory loss (considered at the time scale given by the inverse shear rate) depends erratically on the shear rate. Our study suggests a presence of bifurcations at which the rate of memory loss increases with the shear rate while it decreases away from these points. We also find that the memory loss is not a smooth process. Its rate is closely related to frequency of the sudden transitions of the force network. The loss of memory, quantified by observing evolution of force networks, is found to be correlated with the loss of correlation of shear stress measured on the system scale. Thus, we have established a direct link between the evolution of force networks and macroscopic properties of the considered system.



قيم البحث

اقرأ أيضاً

We analyze the transport properties of a set of symmetry-breaking extensions %, both spatial and temporal, of the Chirikov--Taylor Map. The spatial and temporal asymmetries result in the loss of periodicity in momentum direction in the phase space dy namics, enabling the asymmetric diffusion which is the origin of the unidirectional motion. The simplicity of the model makes the calculation of the global dynamical properties of the system feasible both in phase space and in controlling-parameter space. We present the results of numerical experiments which show the intricate dependence of the asymmetric diffusion to the controlling parameters.
Out-of-time-ordered correlators (OTOC) have been extensively used as a major tool for exploring quantum chaos and also recently, there has been a classical analogue. Studies have been limited to closed systems. In this work, we probe an open classica l many-body system, more specifically, a spatially extended driven dissipative chain of coupled Duffing oscillators using the classical OTOC to investigate the spread and growth (decay) of an initially localized perturbation in the chain. Correspondingly, we find three distinct types of dynamical behavior, namely the sustained chaos, transient chaos and non-chaotic region, as clearly exhibited by different geometrical shapes in the heat map of OTOC. To quantify such differences, we look at instantaneous speed (IS), finite time Lyapunov exponents (FTLE) and velocity dependent Lyapunov exponents (VDLE) extracted from OTOC. Introduction of these quantities turn out to be instrumental in diagnosing and demarcating different regimes of dynamical behavior. To gain control over open nonlinear systems, it is important to look at the variation of these quantities with respect to parameters. As we tune drive, dissipation and coupling, FTLE and IS exhibit transition between sustained chaos and non-chaotic regimeswith intermediate transient chaos regimes and highly intermittent sustained chaos points. In the limit of zero nonlinearity, we present exact analytical results for the driven dissipative harmonic system and we find that our analytical results can very well describe the non-chaotic regime as well as the late time behavior in the transient regime of the Duffing chain. We believe, this analysis is an important step forward towards understanding nonlinear dynamics, chaos and spatio-temporal spread of perturbations in many-particle open systems.
141 - Hyewon Kim , Meesoon Ha , 2017
We propose dynamic scaling in temporal networks with heterogeneous activities and memory, and provide a comprehensive picture for the dynamic topologies of such networks, in terms of the modified activity-driven network model [H. Kim textit{et al.}, Eur. Phys. J. B {bf 88}, 315 (2015)]. Particularly, we focus on the interplay of the time resolution and memory in dynamic topologies. Through the random walk (RW) process, we investigate diffusion properties and topological changes as the time resolution increases. Our results with memory are compared to those of the memoryless case. Based on the temporal percolation concept, we derive scaling exponents in the dynamics of the largest cluster and the coverage of the RW process in time-varying networks. We find that the time resolution in the time-accumulated network determines the effective size of the network, while memory affects relevant scaling properties at the crossover from the dynamic regime to the static one. The origin of memory-dependent scaling behaviors is the dynamics of the largest cluster, which depends on temporal degree distributions. Finally, we conjecture of the extended finite-size scaling ansatz for dynamic topologies and the fundamental property of temporal networks, which are numerically confirmed.
In spatially located, large scale systems, time and space dynamics interact and drives the behaviour. Examples of such systems can be found in many smart city applications and Cyber-Physical Systems. In this paper we present the Signal Spatio-Tempora l Logic (SSTL), a modal logic that can be used to specify spatio-temporal properties of linear time and discrete space models. The logic is equipped with a Boolean and a quantitative semantics for which efficient monitoring algorithms have been developed. As such, it is suitable for real-time verification of both white box and black box complex systems. These algorithms can also be combined with stochastic model checking routines. SSTL combines the until temporal modality with two spatial modalities, one expressing that something is true somewhere nearby and the other capturing the notion of being surrounded by a region that satisfies a given spatio-temporal property. The monitoring algorithms are implemented in an open source Java tool. We illustrate the use of SSTL analysing the formation of patterns in a Turing Reaction-Diffusion system and spatio-temporal aspects of a large bike-sharing system.
We numerically study the dynamics of elementary 1D cellular automata (CA), where the binary state $sigma_i(t) in {0,1}$ of a cell $i$ does not only depend on the states in its local neighborhood at time $t-1$, but also on the memory of its own past s tates $sigma_i(t-2), sigma_i(t-3),...,sigma_i(t-tau),...$. We assume that the weight of this memory decays proportionally to $tau^{-alpha}$, with $alpha ge 0$ (the limit $alpha to infty$ corresponds to the usual CA). Since the memory function is summable for $alpha>1$ and nonsummable for $0le alpha le 1$, we expect pronounced %qualitative and quantitative changes of the dynamical behavior near $alpha=1$. This is precisely what our simulations exhibit, particularly for the time evolution of the Hamming distance $H$ of initially close trajectories. We typically expect the asymptotic behavior $H(t) propto t^{1/(1-q)}$, where $q$ is the entropic index associated with nonextensive statistical mechanics. In all cases, the function $q(alpha)$ exhibits a sensible change at $alpha simeq 1$. We focus on the class II rules 61, 99 and 111. For rule 61, $q = 0$ for $0 le alpha le alpha_c simeq 1.3$, and $q<0$ for $alpha> alpha_c$, whereas the opposite behavior is found for rule 111. For rule 99, the effect of the long-range memory on the spread of damage is quite dramatic. These facts point at a rich dynamics intimately linked to the interplay of local lookup rules and the range of the memory. Finite size scaling studies varying system size $N$ indicate that the range of the power-law regime for $H(t)$ typically diverges $propto N^z$ with $0 le z le 1$. Similar studies have been carried out for other rules, e.g., the famous universal computer rule 110.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا