ترغب بنشر مسار تعليمي؟ اضغط هنا

Extraordinary efficient spin-orbit torque switching in (W, Ta)/epitaxial-Co60Fe40/TiN heterostructures

281   0   0.0 ( 0 )
 نشر من قبل Ankit Kumar
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The giant spin Hall effect in magnetic heterostructures along with low spin memory loss and high interfacial spin mixing conductance are prerequisites to realize energy efficient spin torque based logic devices. We report giant spin Hall angle (SHA) of 28.67 (5.09) for W (Ta) interfaced epi- Co60Fe40/TiN structures. The spin-orbit torque switching current density (J_Crit) is as low as 1.82 (8.21) MA/cm2 in W (Ta)/Co60Fe40(t_CoFe)/TiN structures whose origin lies in the epitaxial interfaces. These structures also exhibit very low spin memory loss and high spin mixing conductance. These extraordinary values of SHA and therefore ultra-low J_Crit in semiconducting industry compatible epitaxial materials combinations open up a new direction for the realization of energy efficient spin logic devices by utilizing epitaxial interfaces.



قيم البحث

اقرأ أيضاً

A large anti-damping spin-obit torque (SOT) efficiency in magnetic heterostructures is a prerequisite to realize energy efficient spin torque based magnetic memories and logic devices. The efficiency can be characterized in terms of the spin-orbit fi elds generated by anti-damping torques when an electric current is passed through the non-magnetic layer. We report a giant spin-orbit field of 48.96 (27.50) mT at an applied current density of 1 MAcm-2 in beta-W interfaced Co60Fe40 (Ni81Fe19)/TiN epitaxial structures due to an anti-damping like torque, which results in a magnetization auto-oscillation current density as low as 1.68(3.27) MAcm-2. The spin-orbit field value increases with decrease of beta-W layer thickness, which affirms that epitaxial surface states are responsible for the extraordinary large efficiency. SOT induced energy efficient in-plane magnetization switching in large 20x100 um2 structures has been demonstrated by Kerr microscopy and the findings are supported by results from micromagnetic simulations. The observed giant SOT efficiencies in the studied all-epitaxial heterostructures are comparable to values reported for topological insulators. These results confirm that by utilizing epitaxial material combinations an extraordinary large SOT efficiency can be achieved using semiconducting industry compatible 5d heavy metals, which provides immediate solutions for the realization of energy efficient spin-logic devices.
The ability to switch magnetic elements by spin-orbit-induced torques has recently attracted much attention for a path towards high-performance, non-volatile memories with low power consumption. Realizing efficient spin-orbit-based switching requires harnessing both new materials and novel physics to obtain high charge-to-spin conversion efficiencies, thus making the choice of spin source crucial. Here we report the observation of spin-orbit torque switching in bilayers consisting of a semimetallic film of 1T-MoTe2 adjacent to permalloy. Deterministic switching is achieved without external magnetic fields at room temperature, and the switching occurs with currents one order of magnitude smaller than those typical in devices using the best-performing heavy metals. The thickness dependence can be understood if the interfacial spin-orbit contribution is considered in addition to the bulk spin Hall effect. Further threefold reduction in the switching current is demonstrated with resort to dumbbell-shaped magnetic elements. These findings foretell exciting prospects of using MoTe2 for low-power semimetal material based spin devices.
Spin-orbit torque manifested as an accumulated spin-polarized moment at nonmagnetic normal metal, and ferromagnet interfaces is a promising magnetization switching mechanism for spintronic devices. To fully exploit this in practice, materials with a high spin Hall angle, i.e., a charge-to-spin conversion efficiency, are indispensable. To date, very few approaches have been made to devise new nonmagnetic metal alloys. Moreover, new materials need to be compatible with semiconductor processing. Here we introduce W-Ta and W-V alloys and deploy them at the interface between $beta$-W/CoFeB layers. First, spin Hall conductivities of W-Ta and W-V structures with various compositions are carried out by first-principles band calculations, which predict the spin Hall conductivity of the W-V alloy is improved from $-0.82 times 10^3$ S/cm that of W to $-1.98 times 10^3$ S/cm. Subsequently, heterostructure fabrication and spin-orbit torque properties are characterized experimentally. By alloying $beta$-W with V at a concentration of 20 at%, we observe a large enhancement of the absolute value of spin Hall conductivity of up to $-(2.77 pm 0.31) times 10^3$ S/cm. By employing X-ray diffraction and scanning transmission electron microscopy, we further explain the enhancement of spin-orbit torque efficiency is stemmed from W-V alloy between W and CoFeB.
181 - Jinsong Xu , C.L. Chien 2021
Voltage control of magnetism and spintronics have been highly desirable, but rarely realized. In this work, we show voltage-controlled spin-orbit torque (SOT) switching in W/CoFeB/MgO films with perpendicular magnetic anisotropy (PMA) with voltage ad ministered through SrTiO3 with a high dielectric constant. We show that a DC voltage can significantly lower PMA by 45%, reduce switching current by 23%, and increase the damping-like torque as revealed by the first and second-harmonic measurements. These are characteristics that are prerequisites for voltage-controlled and voltage-select SOT switching spintronic devices.
We study the spin-orbit torque (SOT) effective fields in Cr/CoFeAl/MgO and Ru/CoFeAl/MgO magnetic heterostructures using the adiabatic harmonic Hall measurement. High-quality perpendicular-magnetic-anisotropy CoFeAl layers were grown on Cr and Ru lay ers. The magnitudes of the SOT effective fields were found to significantly depend on the underlayer material (Cr or Ru) as well as their thicknesses. The damping-like longitudinal effective field ({Delta}H_L) increases with increasing underlayer thickness for all heterostructures. In contrast, the field-like transverse effective field ({Delta}H_T) increases with increasing Ru thickness while it is almost constant or slightly decreases with increasing Cr thickness. The sign of {Delta}H_L observed in the Cr-underlayer devices is opposite from that in the Ru-underlayer devices while {Delta}H_T shows the same sign with a small magnitude. The opposite directions of {Delta}HL indicate that the signs of spin Hall angle in Cr and Ru are opposite, which are in good agreement with theoretical predictions. These results show sizable contribution from SOT even for elements with small spin orbit coupling such as 3d Cr and 4d Ru.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا