ﻻ يوجد ملخص باللغة العربية
Because of their strong excitonic photoluminescence (PL) and electroluminescence (EL), together with an excellent electronic tunability, transition metal dichalcogenide (TMD) semiconductors are promising candidates for novel optoelectronic devices. In recent years, several concepts for light emission from two-dimensional (2D) materials have been demonstrated. Most of these concepts are based on the recombination of electrons and holes in a pn-junction, either along the lateral direction using split-gate geometries in combination with monolayer TMDs, or by precisely stacking different 2D semiconductors on top of each other, in order to fabricate vertical van der Waals heterostructures, working as light-emitting diodes (LEDs). Further, EL was also observed along the channel of ionic liquid gated field-effect transistors (FETs) under ambipolar carrier injection. Another mechanism, which has been studied extensively in carbon nanotubes (CNTs) and more recently also in graphene, is thermal light emission as a result of Joule heating. Although the resulting efficiencies are smaller than that of LEDs based on ambipolar electron-hole injection, these experiments provide valuable insights into microscopic processes, such as electron-phonon and phonon-phonon interactions, and the behavior of low-dimensional materials under strong bias in general.
We realize and investigate ionic liquid gated field-effect transistors (FETs) on large-area MoS2 monolayers grown by chemical vapor deposition (CVD). Under electron accumulation, the performance of these devices is comparable to that of FETs based on
First-principles calculations within density functional theory (DFT) have been carried out to investigate the adsorption of various gas molecules including CO, CO2, NH3, NO and NO2 on MoS2 monolayer in order to fully exploit the gas sensing capabilit
Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics and energy harvesting. Large-area growth methods are needed to open the way to the applications. Whil
We use micro-Raman and photoluminescence (PL) spectroscopy at 300K to investigate the influence of uniaxial tensile strain on the vibrational and optoelectronic properties of monolayer and bilayer MoS2 on a flexible substrate. The initially degenerat
Optical excitation typically enhances electrical conduction and low-frequency radiation absorption in semiconductors. We have, however, observed a pronounced transient decrease of conductivity in doped monolayer molybdenum disulfide (MoS2), a two-dim