ﻻ يوجد ملخص باللغة العربية
Optical excitation typically enhances electrical conduction and low-frequency radiation absorption in semiconductors. We have, however, observed a pronounced transient decrease of conductivity in doped monolayer molybdenum disulfide (MoS2), a two-dimensional (2D) semiconductor, under femtosecond laser excitation. In particular, the conductivity is reduced dramatically down to only 30% of its equilibrium value with high pump fluence. This anomalous phenomenon arises from the strong many-body interactions in the system, where photoexcited electron-hole pairs join the doping-induced charges to form trions, bound states of two electrons and one hole. The resultant increase of the carrier effective mass substantially diminishes the carrier conductivity.
We demonstrate that the temperature and doping dependencies of the photoluminescence (PL) spectra of a doped MoS2 monolayer have several peculiar characteristics defined by trion radiative decay. While only zero-momentum exciton states are coupled to
We study electrical transport properties in exfoliated molybdenum disulfide (MoS2) back-gated field effect transistors at low drain bias and under different illumination intensities. It is found that photoconductive and photogating effect as well as
Monolayer transition metal dichalcogenides (TMD) have numerous potential applications in ultrathin electronics and photonics. The exposure of TMD based devices to light generates photo-carriers resulting in an enhanced conductivity, which can be effe
Recent discoveries of the photoresponse of molybdenum disulfide (MoS2) have shown the considerable potential of these two-dimensional transition metal dichalcogenides for optoelectronic applications. Among the various types of photoresponses of MoS2,
The emerging field of valleytronics aims to exploit the valley pseudospin of electrons residing near Bloch band extrema as an information carrier. Recent experiments demonstrating optical generation and manipulation of exciton valley coherence (the s