ترغب بنشر مسار تعليمي؟ اضغط هنا

On the stability of the generalized, finite deformation correspondence model of peridynamics

57   0   0.0 ( 0 )
 نشر من قبل Masoud Behzadinasab
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A class of peridynamic material models known as constitutive correspondence models provide a bridge between classical continuum mechanics and peridynamics. These models are useful because they allow well-established local constitutive theories to be used within the nonlocal framework of peridynamics. A recent finite deformation correspondence theory (Foster and Xu, 2018) was developed and reported to improve stability properties of the original correspondence model (Silling et al., 2007). This paper presents a stability analysis that indicates the reported advantages of the new theory were overestimated. Homogeneous deformations are analyzed and shown to exibit unstable material behavior at the continuum level. Additionally, the effects of a particle discretization on the stability of the model are reported. Numerical examples demonstrate the large errors induced by the unstable behavior. Stabilization strategies and practical applications of the new finite deformation model are discussed.



قيم البحث

اقرأ أيضاً

We consider three mathematically equivalent variants of the conjugate gradient (CG) algorithm and how they perform in finite precision arithmetic. It was shown in [{em Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences}, Lin.~A lg.~Appl., 113 (1989), pp.~7-63] that under certain conditions the convergence of a slightly perturbed CG computation is like that of exact CG for a matrix with many eigenvalues distributed throughout tiny intervals about the eigenvalues of the given matrix, the size of the intervals being determined by how closely these conditions are satisfied. We determine to what extent each of these variants satisfies the desired conditions, using a set of test problems and show that there is significant correlation between how well these conditions are satisfied and how well the finite precision computation converges before reaching its ultimately attainable accuracy. We show that for problems where the width of the intervals containing the eigenvalues of the associated exact CG matrix makes a significant difference in the behavior of exact CG, the different CG variants behave differently in finite precision arithmetic. For problems where the interval width makes little difference or where the convergence of exact CG is essentially governed by the upper bound based on the square root of the condition number of the matrix, the different CG variants converge similarly in finite precision arithmetic until the ultimate level of accuracy is achieved, although this ultimate level of accuracy may be different for the different variants. This points to the need for testing new CG variants on problems that are especially sensitive to rounding errors.
103 - M. Dov{s}kav{r} 2020
A recently introduced representation by a set of Wang tiles -- a generalization of the traditional Periodic Unit Cell based approach -- serves as a reduced geometrical model for materials with stochastic heterogeneous microstructure, enabling an effi cient synthesis of microstructural realizations. To facilitate macroscopic analyses with a fully resolved microstructure generated with Wang tiles, we develop a reduced order modelling scheme utilizing pre-computed characteristic features of the tiles. In the offline phase, inspired by the computational homogenization, we extract continuous fluctuation fields from the compressed microstructural representation as responses to generalized loading represented by the first- and second-order macroscopic gradients. In the online phase, using the ansatz of the Generalized Finite Element Method, we combine these fields with a coarse finite element discretization to create microstructure-informed reduced modes specific for a given macroscopic problem. Considering a two-dimensional scalar elliptic problem, we demonstrate that our scheme delivers less than a 3% error in both the relative $L_2$ and energy norms with only 0.01% of the unknowns when compared to the fully resolved problem. Accuracy can be further improved by locally refining the macroscopic discretization and/or employing more pre-computed fluctuation fields. Finally, unlike the standard snapshot-based reduced-order approaches, our scheme handles significant changes in the macroscopic geometry or loading without the need for recalculating the offline phase, because the fluctuation fields are extracted without any prior knowledge on the macroscopic problem.
This paper addresses some numerical and theoretical aspects of dual Schur domain decomposition methods for linear first-order transient partial differential equations. In this work, we consider the trapezoidal family of schemes for integrating the or dinary differential equations (ODEs) for each subdomain and present four different coupling methods, corresponding to different algebraic constraints, for enforcing kinematic continuity on the interface between the subdomains. Method 1 (d-continuity) is based on the conventional approach using continuity of the primary variable and we show that this method is unstable for a lot of commonly used time integrators including the mid-point rule. To alleviate this difficulty, we propose a new Method 2 (Modified d-continuity) and prove its stability for coupling all time integrators in the trapezoidal family (except the forward Euler). Method 3 (v-continuity) is based on enforcing the continuity of the time derivative of the primary variable. However, this constraint introduces a drift in the primary variable on the interface. We present Method 4 (Baumgarte stabilized) which uses Baumgarte stabilization to limit this drift and we derive bounds for the stabilization parameter to ensure stability. Our stability analysis is based on the ``energy method, and one of the main contributions of this paper is the extension of the energy method (which was previously introduced in the context of numerical methods for ODEs) to assess the stability of numerical formulations for index-2 differential-algebraic equations (DAEs).
A thin shell finite element approach based on Loops subdivision surfaces is proposed, capable of dealing with large deformations and anisotropic growth. To this end, the Kirchhoff-Love theory of thin shells is derived and extended to allow for arbitr ary in-plane growth. The simplicity and computational efficiency of the subdivision thin shell elements is outstanding, which is demonstrated on a few standard loading benchmarks. With this powerful tool at hand, we demonstrate the broad range of possible applications by numerical solution of several growth scenarios, ranging from the uniform growth of a sphere, to boundary instabilities induced by large anisotropic growth. Finally, it is shown that the problem of a slowly and uniformly growing sheet confined in a fixed hollow sphere is equivalent to the inverse process where a sheet of fixed size is slowly crumpled in a shrinking hollow sphere in the frictionless, quasi-static, elastic limit.
This work concerns the continuum basis and numerical formulation for deformable materials with viscous dissipative mechanisms. We derive a viscohyperelastic modeling framework based on fundamental thermomechanical principles. Since most large deforma tion problems exhibit the isochoric property, our modeling work is constructed based on the Gibbs free energy in order to develop a continuum theory using the pressure-primitive variables, which is known to be well-behaved in the incompressible limit. With a general theory presented, we focus on a family of free energies that leads to the so-called finite deformation linear model. Our derivation elucidates the origin of the evolution equations of that model, which was originally proposed heuristically. In our derivation, the thermodynamic inconsistency is clarified and rectified. We then discuss the relaxation property of the non-equilibrium stress in the thermodynamic equilibrium limit and its implication on the form of free energy. A modified version of the identical polymer chain model is then proposed, with a special case being the model proposed by G. Holzapfel and J. Simo. Based on the consistent modeling framework, a provably energy stable numerical scheme is constructed for incompressible viscohyperelasticity using inf-sup stable elements. In particular, we adopt a suite of smooth generalization of the Taylor-Hood element based on Non-Uniform Rational B-Splines (NURBS) for spatial discretization. The temporal discretization is performed via the generalized-alpha scheme. We present a suite of numerical results to corroborate the proposed numerical properties, including the nonlinear stability, robustness under large deformation, and the stress accuracy resolved by the higher-order elements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا