ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning multimodal representations for sample-efficient recognition of human actions

84   0   0.0 ( 0 )
 نشر من قبل Miguel Vasco
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Humans interact in rich and diverse ways with the environment. However, the representation of such behavior by artificial agents is often limited. In this work we present textit{motion concepts}, a novel multimodal representation of human actions in a household environment. A motion concept encompasses a probabilistic description of the kinematics of the action along with its contextual background, namely the location and the objects held during the performance. Furthermore, we present Online Motion Concept Learning (OMCL), a new algorithm which learns novel motion concepts from action demonstrations and recognizes previously learned motion concepts. The algorithm is evaluated on a virtual-reality household environment with the presence of a human avatar. OMCL outperforms standard motion recognition algorithms on an one-shot recognition task, attesting to its potential for sample-efficient recognition of human actions.



قيم البحث

اقرأ أيضاً

160 - Zeeshan Ahmad , Naimul Khan 2020
One of the major reasons for misclassification of multiplex actions during action recognition is the unavailability of complementary features that provide the semantic information about the actions. In different domains these features are present wit h different scales and intensities. In existing literature, features are extracted independently in different domains, but the benefits from fusing these multidomain features are not realized. To address this challenge and to extract complete set of complementary information, in this paper, we propose a novel multidomain multimodal fusion framework that extracts complementary and distinct features from different domains of the input modality. We transform input inertial data into signal images, and then make the input modality multidomain and multimodal by transforming spatial domain information into frequency and time-spectrum domain using Discrete Fourier Transform (DFT) and Gabor wavelet transform (GWT) respectively. Features in different domains are extracted by Convolutional Neural networks (CNNs) and then fused by Canonical Correlation based Fusion (CCF) for improving the accuracy of human action recognition. Experimental results on three inertial datasets show the superiority of the proposed method when compared to the state-of-the-art.
To improve the accessibility of smart devices and to simplify their usage, building models which understand user interfaces (UIs) and assist users to complete their tasks is critical. However, unique challenges are proposed by UI-specific characteris tics, such as how to effectively leverage multimodal UI features that involve image, text, and structural metadata and how to achieve good performance when high-quality labeled data is unavailable. To address such challenges we introduce UIBert, a transformer-based joint image-text model trained through novel pre-training tasks on large-scale unlabeled UI data to learn generic feature representations for a UI and its components. Our key intuition is that the heterogeneous features in a UI are self-aligned, i.e., the image and text features of UI components, are predictive of each other. We propose five pretraining tasks utilizing this self-alignment among different features of a UI component and across various components in the same UI. We evaluate our method on nine real-world downstream UI tasks where UIBert outperforms strong multimodal baselines by up to 9.26% accuracy.
Multi-modal learning, which focuses on utilizing various modalities to improve the performance of a model, is widely used in video recognition. While traditional multi-modal learning offers excellent recognition results, its computational expense lim its its impact for many real-world applications. In this paper, we propose an adaptive multi-modal learning framework, called AdaMML, that selects on-the-fly the optimal modalities for each segment conditioned on the input for efficient video recognition. Specifically, given a video segment, a multi-modal policy network is used to decide what modalities should be used for processing by the recognition model, with the goal of improving both accuracy and efficiency. We efficiently train the policy network jointly with the recognition model using standard back-propagation. Extensive experiments on four challenging diverse datasets demonstrate that our proposed adaptive approach yields 35%-55% reduction in computation when compared to the traditional baseline that simply uses all the modalities irrespective of the input, while also achieving consistent improvements in accuracy over the state-of-the-art methods.
How much does having visual priors about the world (e.g. the fact that the world is 3D) assist in learning to perform downstream motor tasks (e.g. delivering a package)? We study this question by integrating a generic perceptual skill set (e.g. a dis tance estimator, an edge detector, etc.) within a reinforcement learning framework--see Figure 1. This skill set (hereafter mid-level perception) provides the policy with a more processed state of the world compared to raw images. We find that using a mid-level perception confers significant advantages over training end-to-end from scratch (i.e. not leveraging priors) in navigation-oriented tasks. Agents are able to generalize to situations where the from-scratch approach fails and training becomes significantly more sample efficient. However, we show that realizing these gains requires careful selection of the mid-level perceptual skills. Therefore, we refine our findings into an efficient max-coverage feature set that can be adopted in lieu of raw images. We perform our study in completely separate buildings for training and testing and compare against visually blind baseline policies and state-of-the-art feature learning methods.
In this work we propose a simple and efficient framework for learning sentence representations from unlabelled data. Drawing inspiration from the distributional hypothesis and recent work on learning sentence representations, we reformulate the probl em of predicting the context in which a sentence appears as a classification problem. Given a sentence and its context, a classifier distinguishes context sentences from other contrastive sentences based on their vector representations. This allows us to efficiently learn different types of encoding functions, and we show that the model learns high-quality sentence representations. We demonstrate that our sentence representations outperform state-of-the-art unsupervised and supervised representation learning methods on several downstream NLP tasks that involve understanding sentence semantics while achieving an order of magnitude speedup in training time.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا