ترغب بنشر مسار تعليمي؟ اضغط هنا

A high binary fraction for the most massive close-in giant planets and brown dwarf desert members

36   0   0.0 ( 0 )
 نشر من قبل Cl\\'emence Fontanive
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stellar multiplicity is believed to influence planetary formation and evolution, although the precise nature and extent of this role remain ambiguous. We present a study aimed at testing the role of stellar multiplicity in the formation and/or evolution of the most massive, close-in planetary and substellar companions. Using direct imaging observations, as well as the Gaia DR2 catalogue, we searched for wide binary companions to 38 stars hosting massive giant planets or brown dwarfs (M > 7 MJup) on orbits shorter than ~1 AU. We report the discovery of a new component in the WASP-14 system, and present an independent confirmation of a comoving companion to WASP-18. From a robust Bayesian statistical analysis, we derived a binary fraction of 79.0+13.2-14.7% between 20-10,000 AU for our sample, twice as high as for field stars with a 3-{sigma} significance. This binary frequency was found to be larger than for lower-mass planets on similar orbits, and we observed a marginally higher binary rate for inner companions with periods shorter than 10 days. These results demonstrate that stellar companions greatly influence the formation and/or evolution of these systems, suggesting that the role played by binary companions becomes more important for higher-mass planets, and that this trend may be enhanced for systems with tighter orbits. Our analysis also revealed a peak in binary separation at 250 AU, highlighting a shortfall of close binaries among our sample. This indicates that the mechanisms affecting planet and brown dwarf formation or evolution in binaries must operate from wide separations, although we found that the Kozai-Lidov mechanism is unlikely to be the dominant underlying process. We conclude that binarity plays a crucial role in the existence of very massive short-period giant planets and brown dwarf desert inhabitants, which are almost exclusively observed in multiple systems.

قيم البحث

اقرأ أيضاً

116 - R. F. Diaz 2011
The mass domain where massive extrasolar planets and brown dwarfs lay is still poorly understood. Indeed, not even a clear dividing line between massive planets and brown dwarfs has been established yet. This is partly due to the paucity of this kind of objects orbiting close to solar-type stars, the so-called brown dwarf desert, that hinders setting up a strong observational base to compare to models and theories of formation and evolution. We search to increase the current sample of massive sub-stellar objects with precise orbital parameters, and to constrain the true mass of detected sub-stellar candidates. The initial identification of sub-stellar candidates is done using precise radial velocity measurements obtained with the SOPHIE spectrograph at the 1.93-m telescope of the Haute-Provence Observatory. Subsequent characterisation of these candidates, with the principal aim of identifying stellar companions in low-inclination orbits, is done by means of different spectroscopic diagnostics, as the measurement of the bisector velocity span and the study of the correlation mask effect. With this objective, we also employed astrometric data from the Hipparcos mission and a novel method of simulating stellar cross-correlation functions. Seven new objects with minimum masses between ~ 10 Mjup and ~90 Mjup are detected. Out of these, two are identified as low-mass stars in low-inclination orbits, and two others have masses below the theoretical deuterium-burning limit, and are therefore planetary candidates. The remaining three are brown dwarf candidates; the current upper limits for their the masses do not allow us to conclude on their nature. Additionally, we have improved on the parameters of an already-known brown dwarf (HD137510b), confirmed by astrometry.
258 - Ansgar Reiners 2010
Very little is known about magnetic fields of extrasolar planets and brown dwarfs. We use the energy flux scaling law presented by Christensen et al. (2009) to calculate the evolution of average magnetic fields in extrasolar planets and brown dwarfs under the assumption of fast rotation, which is probably the case for most of them. We find that massive brown dwarfs of about 70 M_Jup can have fields of a few kilo-Gauss during the first few hundred Million years. These fields can grow by a factor of two before they weaken after deuterium burning has stopped. Brown dwarfs with weak deuterium burning and extrasolar giant planets start with magnetic fields between ~100G and ~1kG at the age of a few Myr, depending on their mass. Their magnetic field weakens steadily until after 10Gyr it has shrunk by about a factor of 10. We use observed X-ray luminosities to estimate the age of the known extrasolar giant planets that are more massive than 0.3M_Jup and closer than 20pc. Taking into account the age estimate, and assuming sun-like wind-properties and radio emission processes similar to those at Jupiter, we calculate their radio flux and its frequency. The highest radio flux we predict comes out as 700mJy at a frequency around 150MHz for $tau$Boob, but the flux is below 60mJy for the rest. Most planets are expected to emit radiation between a few Mhz and up to 100MHz, well above the ionospheric cutoff frequency.
123 - David S. Spiegel , 2010
There is no universally acknowledged criterion to distinguish brown dwarfs from planets. Numerous studies have used or suggested a definition based on an objects mass, taking the ~13-Jupiter mass (M_J) limit for the ignition of deuterium. Here, we in vestigate various deuterium-burning masses for a range of models. We find that, while 13 M_J is generally a reasonable rule of thumb, the deuterium fusion mass depends on the helium abundance, the initial deuterium abundance, the metallicity of the model, and on what fraction of an objects initial deuterium abundance must combust in order for the object to qualify as having burned deuterium. Even though, for most proto-brown dwarf conditions, 50% of the initial deuterium will burn if the objects mass is ~(13.0 +/- 0.8)M_J, the full range of possibilities is significantly broader. For models ranging from zero-metallicity to more than three times solar metallicity, the deuterium burning mass ranges from ~11.0 M_J (for 3-times solar metallicity, 10% of initial deuterium burned) to ~16.3 M_J (for zero metallicity, 90% of initial deuterium burned).
We present an analysis of microlensing event OGLE-2016-BLG-0693, based on the survey-only microlensing observations by the OGLE and KMTNet groups. In order to analyze the light curve, we consider the effects of parallax, orbital motion, and baseline slope, and also refine the result using a Galactic model prior. From the microlensing analysis, we find that the event is a binary composed of a low-mass brown dwarf 49+-20 M_J companion and a K- or G-dwarf host, which lies at a distance 5.0+-0.6 kpc toward the Galactic bulge. The projected separation between the brown dwarf and its host star is less than 5 AU, and thus it is likely that the brown dwarf companion is located in the brown dwarf desert.
102 - Bo Ma , Jian Ge , Alex Wolszczan 2016
We report the detections of a giant planet (MARVELS-7b) and a brown dwarf candidate (MARVELS-7c) around the primary star in the close binary system, HD 87646. It is the first close binary system with more than one substellar circum-primary companion discovered to the best of our knowledge. The detection of this giant planet was accomplished using the first multi-object Doppler instrument (KeckET) at the Sloan Digital Sky Survey (SDSS) telescope. Subsequent radial velocity observations using ET at Kitt Peak National Observatory, HRS at HET, the Classic spectrograph at the Automatic Spectroscopic Telescope at Fairborn Observatory, and MARVELS from SDSS-III confirmed this giant planet discovery and revealed the existence of a long-period brown dwarf in this binary. HD 87646 is a close binary with a separation of $sim22$ AU between the two stars, estimated using the Hipparcos catalogue and our newly acquired AO image from PALAO on the 200-inch Hale Telescope at Palomar. The primary star in the binary, HD 87646A, has Teff = 5770$pm$80K, log(g)=4.1$pm$0.1 and [Fe/H] = $-0.17pm0.08$. The derived minimum masses of the two substellar companions of HD 87646A are 12.4$pm$0.7M$_{rm Jup}$ and 57.0$pm3.7$M$_{rm Jup}$. The periods are 13.481$pm$0.001 days and 674$pm$4 days and the measured eccentricities are 0.05$pm$0.02 and 0.50$pm$0.02 respectively. Our dynamical simulations show the system is stable if the binary orbit has a large semi-major axis and a low eccentricity, which can be verified with future astrometry observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا