ﻻ يوجد ملخص باللغة العربية
Future wireless access networks need to support diversified quality of service (QoS) metrics required by various types of Internet-of-Things (IoT) devices, e.g., age of information (AoI) for status generating sources and ultra low latency for safety information in vehicular networks. In this paper, a novel inner-state driven random access (ISDA) framework is proposed based on distributed policy learning, in particular a cross-entropy method. Conventional random access schemes, e.g., $p$-CSMA, assume state-less terminals, and thus assigning equal priorities to all. In ISDA, the inner-states of terminals are described by a time-varying state vector, and the transmission probabilities of terminals in the contention period are determined by their respective inner-states. Neural networks are leveraged to approximate the function mappings from inner-states to transmission probabilities, and an iterative approach is adopted to improve these mappings in a distributed manner. Experiment results show that ISDA can improve the QoS of heterogeneous terminals simultaneously compared to conventional CSMA schemes.
Multi-user multi-armed bandits have emerged as a good model for uncoordinated spectrum access problems. In this paper we consider the scenario where users cannot communicate with each other. In addition, the environment may appear differently to diff
Non-Orthogonal Multiple Access (NOMA) and caching are two proposed approaches to increase the capacity of future 5G wireless systems. Typically in NOMA systems, signals at the receiver are decoded using successive interference cancellation in order t
Energy Efficiency (EE) is a big issue in 5th Generation Wireless Communications (5G) on condition that the number of access User Equipments (UEs) are exploding and more antennas should be equipped in one Base Station (BS). In EE studies, prior litera
This paper designs a cooperative activity detection framework for massive grant-free random access in the sixth-generation (6G) cell-free wireless networks based on the covariance of the received signals at the access points (APs). In particular, mul
Cloud applications are increasingly shifting from large monolithic services, to large numbers of loosely-coupled, specialized microservices. Despite their advantages in terms of facilitating development, deployment, modularity, and isolation, microse