ترغب بنشر مسار تعليمي؟ اضغط هنا

DA-LSTM: A Long Short-Term Memory with Depth Adaptive to Non-uniform Information Flow in Sequential Data

115   0   0.0 ( 0 )
 نشر من قبل Yifeng Zhang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Much sequential data exhibits highly non-uniform information distribution. This cannot be correctly modeled by traditional Long Short-Term Memory (LSTM). To address that, recent works have extended LSTM by adding more activations between adjacent inputs. However, the approaches often use a fixed depth, which is at the step of the most information content. This one-size-fits-all worst-case approach is not satisfactory, because when little information is distributed to some steps, shallow structures can achieve faster convergence and consume less computation resource. In this paper, we develop a Depth-Adaptive Long Short-Term Memory (DA-LSTM) architecture, which can dynamically adjust the structure depending on information distribution without prior knowledge. Experimental results on real-world datasets show that DA-LSTM costs much less computation resource and substantially reduce convergence time by $41.78%$ and $46.01 %$, compared with Stacked LSTM and Deep Transition LSTM, respectively.

قيم البحث

اقرأ أيضاً

Associative memory using fast weights is a short-term memory mechanism that substantially improves the memory capacity and time scale of recurrent neural networks (RNNs). As recent studies introduced fast weights only to regular RNNs, it is unknown w hether fast weight memory is beneficial to gated RNNs. In this work, we report a significant synergy between long short-term memory (LSTM) networks and fast weight associative memories. We show that this combination, in learning associative retrieval tasks, results in much faster training and lower test error, a performance boost most prominent at high memory task difficulties.
We investigate a new method to augment recurrent neural networks with extra memory without increasing the number of network parameters. The system has an associative memory based on complex-valued vectors and is closely related to Holographic Reduced Representations and Long Short-Term Memory networks. Holographic Reduced Representations have limited capacity: as they store more information, each retrieval becomes noisier due to interference. Our system in contrast creates redundant copies of stored information, which enables retrieval with reduced noise. Experiments demonstrate faster learning on multiple memorization tasks.
Time series prediction can be generalized as a process that extracts useful information from historical records and then determines future values. Learning long-range dependencies that are embedded in time series is often an obstacle for most algorit hms, whereas Long Short-Term Memory (LSTM) solutions, as a specific kind of scheme in deep learning, promise to effectively overcome the problem. In this article, we first give a brief introduction to the structure and forward propagation mechanism of the LSTM model. Then, aiming at reducing the considerable computing cost of LSTM, we put forward the Random Connectivity LSTM (RCLSTM) model and test it by predicting traffic and user mobility in telecommunication networks. Compared to LSTM, RCLSTM is formed via stochastic connectivity between neurons, which achieves a significant breakthrough in the architecture formation of neural networks. In this way, the RCLSTM model exhibits a certain level of sparsity, which leads to an appealing decrease in the computational complexity and makes the RCLSTM model become more applicable in latency-stringent application scenarios. In the field of telecommunication networks, the prediction of traffic series and mobility traces could directly benefit from this improvement as we further demonstrate that the prediction accuracy of RCLSTM is comparable to that of the conventional LSTM no matter how we change the number of training samples or the length of input sequences.
Accurate and efficient models for rainfall runoff (RR) simulations are crucial for flood risk management. Most rainfall models in use today are process-driven; i.e. they solve either simplified empirical formulas or some variation of the St. Venant ( shallow water) equations. With the development of machine-learning techniques, we may now be able to emulate rainfall models using, for example, neural networks. In this study, a data-driven RR model using a sequence-to-sequence Long-short-Term-Memory (LSTM) network was constructed. The model was tested for a watershed in Houston, TX, known for severe flood events. The LSTM networks capability in learning long-term dependencies between the input and output of the network allowed modeling RR with high resolution in time (15 minutes). Using 10-years precipitation from 153 rainfall gages and river channel discharge data (more than 5.3 million data points), and by designing several numerical tests the developed model performance in predicting river discharge was tested. The model results were also compared with the output of a process-driven model Gridded Surface Subsurface Hydrologic Analysis (GSSHA). Moreover, physical consistency of the LSTM model was explored. The model results showed that the LSTM model was able to efficiently predict discharge and achieve good model performance. When compared to GSSHA, the data-driven model was more efficient and robust in terms of prediction and calibration. Interestingly, the performance of the LSTM model improved (test Nash-Sutcliffe model efficiency from 0.666 to 0.942) when a selected subset of rainfall gages based on the model performance, were used as input instead of all rainfall gages.
In this paper, we propose a novel neural network structure, namely emph{feedforward sequential memory networks (FSMN)}, to model long-term dependency in time series without using recurrent feedback. The proposed FSMN is a standard fully-connected fee dforward neural network equipped with some learnable memory blocks in its hidden layers. The memory blocks use a tapped-delay line structure to encode the long context information into a fixed-size representation as short-term memory mechanism. We have evaluated the proposed FSMNs in several standard benchmark tasks, including speech recognition and language modelling. Experimental results have shown FSMNs significantly outperform the conventional recurrent neural networks (RNN), including LSTMs, in modeling sequential signals like speech or language. Moreover, FSMNs can be learned much more reliably and faster than RNNs or LSTMs due to the inherent non-recurrent model structure.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا