ﻻ يوجد ملخص باللغة العربية
I present a software tool for solving the astrometry of astronomical images. The code puts emphasis on robustness against failures for correctly matching the sources in the image to a reference catalog, and on the stability of the solutions over the field of view (e.g., using orthogonal polynomials for the fitted transformation). The code was tested on over 50,000 images from various sources, including the Palomar Transient Factory (PTF) and the Zwicky Transient Facility (ZTF). The tested images equally represent low and high Galactic latitude fields and exhibit failure/bad-solution rate of <2x10^-5. Running on PTF 60-s integration images, and using the GAIA-DR2 as a reference catalog, the typical two-axes-combined astrometric root-mean square (RMS) is 14 mas at the bright end, presumably due to astrometric scintillation noise and systematic errors. I discuss the effects of seeing, airmass and the order of the transformation on the astrometric accuracy. The software, available online, is developed in MATLAB as part of an astronomical image processing environment and it can be run also as a stand-alone code.
The ESA space astrometry mission Gaia, planned to be launched in 2013, has been designed to make angular measurements on a global scale with micro-arcsecond accuracy. A key component of the data processing for Gaia is the astrometric core solution, w
We describe development and application of a Global Astrometric Solution (GAS) to the problem of Pan-STARRS1 (PS1) astrometry. Current PS1 astrometry is based on differential astrometric measurements using 2MASS reference stars, thus PS1 astrometry i
We present a new solution for the dispersive element in astronomical spectrographs, which in many cases can provide an upgrade path to enhance the spectral resolution of existing moderate-resolution reflection-grating spectrographs. We demonstrate th
We present a new method of interpolation for the pixel brightness estimation in astronomical images. Our new method is simple and easily implementable. We show the comparison of this method with the widely used linear interpolation and other interpol
Gaia Data Release 2 (Gaia DR2) contains results for 1693 million sources in the magnitude range 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 22 months of its operational phase. We describe the i