ترغب بنشر مسار تعليمي؟ اضغط هنا

Socially-Aware Congestion Control in Ad-Hoc Networks: Current Status and The Way Forward

99   0   0.0 ( 0 )
 نشر من قبل Muhammad Bilal
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Ad-hoc social networks (ASNETs) represent a special type of traditional ad-hoc network in which a users social properties (such as the social connections and communications metadata as well as application data) are leveraged for offering enhanced services in a distributed infrastructureless environments. However, the wireless medium, due to limited bandwidth, can easily suffer from the problem of congestion when social metadata and application data are exchanged among nodes---a problem that is compounded by the fact that some nodes may act selfishly and not share its resources. While a number of congestion control schemes have been proposed for the traditional ad-hoc networks, there has been limited focus on incorporating social awareness into congestion control schemes. We revisit the existing traditional ad-hoc congestion control and data distribution protocols and motivate the need for embedding social awareness into these protocols to improve performance. We report that although some work is available in opportunistic network that uses socially-aware techniques to control the congestion issue, this area is largely unexplored and warrants more research attention. In this regards, we highlight the current research progress and identify multiple future directions of research.

قيم البحث

اقرأ أيضاً

Ad-hoc Social Network (ASNET), which explores social connectivity between users of mobile devices, is becoming one of the most important forms of todays internet. In this context, maximum bandwidth utilization of intermediate nodes in resource scarce environments is one of the challenging tasks. Traditional Transport Control Protocol (TCP) uses the round trip time mechanism for sharing bandwidth resources between users. However, it does not explore socially-aware properties between nodes and cannot differentiate effectively between various types of packet losses in wireless networks. In this paper, a socially-aware congestion avoidance protocol, namely TIBIAS, which takes advantage of similarity matching social properties among intermediate nodes, is proposed to improve the resource efficiency of ASNETs. TIBIAS performs efficient data transfer over TCP. During the course of bandwidth resource allocation, it gives high priority for maximally matched interest similarity between different TCP connections on ASNET links. TIBIAS does not require any modification at lower layers or on receiver nodes. Experimental results show that TIBIAS performs better as compared against existing protocols, in terms of link utilization, unnecessary reduction of the congestion window, throughput and retransmission ratio.
In this paper, the well-known forwarders dilemma is generalized by accounting for the presence of link quality fluctuations; the forwarders dilemma is a four-node interaction model with two source nodes and two destination nodes. It is known to be ve ry useful to study ad hoc networks. To characterize the long-term utility region when the source nodes have to control their power with partial channel state information (CSI), we resort to a recent result in Shannon theory. It is shown how to exploit this theoretical result to find the long-term utility region and determine good power control policies. This region is of prime importance since it provides the best performance possible for a given knowledge at the nodes. Numerical results provide several new insights into the repeated forwarders dilemma power control problem; for instance, the knowledge of global CSI only brings a marginal performance improvement with respect to the local CSI case.
Topology Control (TC) aims at tuning the topology of highly dynamic networks to provide better control over network resources and to increase the efficiency of communication. Recently, many TC protocols have been proposed. The protocols are designed for preserving connectivity, minimizing energy consumption, maximizing the overall network coverage or network capacity. Each TC protocol makes different assumptions about the network topology, environment detection resources, and control capacities. This circumstance makes it extremely difficult to comprehend the role and purpose of each protocol. To tackle this situation, a taxonomy for TC protocols is presented throughout this paper. Additionally, some TC protocols are classified based upon this taxonomy.
118 - Tamaghna Acharya 2010
For stationary wireless ad hoc networks, one of the key challenging issues in routing and multicasting is to conserve as much energy as possible without compromising path efficiency measured as end-to-end delay. In this paper, we address the problem of path efficient and energy aware multicasting in static wireless ad hoc networks. We propose a novel distributed scalable algorithm for finding a virtual multicast backbone (VMB). Based on this VMB, we have further developed a multicasting scheme that jointly improves path efficiency and energy conservation. By exploiting inherent broadcast advantage of wireless communication and employing a more realistic energy consumption model for wireless communication which not only depends on radio propagation losses but also on energy losses in transceiver circuitry, our simulation results show that the proposed VMB-based multicasting scheme outperforms existing prominent tree based energy conserving, path efficient multicasting schemes.
This paper reports experimental results on self-organizing wireless networks carried by small flying robots. Flying ad hoc networks (FANETs) composed of small unmanned aerial vehicles (UAVs) are flexible, inexpensive and fast to deploy. This makes th em a very attractive technology for many civilian and military applications. Due to the high mobility of the nodes, maintaining a communication link between the UAVs is a challenging task. The topology of these networks is more dynamic than that of typical mobile ad hoc networks (MANETs) and of typical vehicle ad hoc networks (VANETs). As a consequence, the existing routing protocols designed for MANETs partly fail in tracking network topology changes. In this work, we compare two different routing algorithms for ad hoc networks: optimized link-state routing (OLSR), and predictive-OLSR (P-OLSR). The latter is an OLSR extension that we designed for FANETs; it takes advantage of the GPS information available on board. To the best of our knowledge, P-OLSR is currently the only FANET-specific routing technique that has an available Linux implementation. We present results obtained by both Media Access Control (MAC) layer emulations and real-world experiments. In the experiments, we used a testbed composed of two autonomous fixed-wing UAVs and a node on the ground. Our experiments evaluate the link performance and the communication range, as well as the routing performance. Our emulation and experimental results show that P-OLSR significantly outperforms OLSR in routing in the presence of frequent network topology changes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا