ﻻ يوجد ملخص باللغة العربية
In this paper, the well-known forwarders dilemma is generalized by accounting for the presence of link quality fluctuations; the forwarders dilemma is a four-node interaction model with two source nodes and two destination nodes. It is known to be very useful to study ad hoc networks. To characterize the long-term utility region when the source nodes have to control their power with partial channel state information (CSI), we resort to a recent result in Shannon theory. It is shown how to exploit this theoretical result to find the long-term utility region and determine good power control policies. This region is of prime importance since it provides the best performance possible for a given knowledge at the nodes. Numerical results provide several new insights into the repeated forwarders dilemma power control problem; for instance, the knowledge of global CSI only brings a marginal performance improvement with respect to the local CSI case.
Topology Control (TC) aims at tuning the topology of highly dynamic networks to provide better control over network resources and to increase the efficiency of communication. Recently, many TC protocols have been proposed. The protocols are designed
Network coding is a recently proposed method for transmitting data, which has been shown to have potential to improve wireless network performance. We study network coding for one specific case of multicast, broadcasting, from one source to all nodes
We consider a dense, ad hoc wireless network, confined to a small region. The wireless network is operated as a single cell, i.e., only one successful transmission is supported at a time. Data packets are sent between sourcedestination pairs by multi
We consider optimal resource allocation problems under asynchronous wireless network setting. Without explicit model knowledge, we design an unsupervised learning method based on Aggregation Graph Neural Networks (Agg-GNNs). Depending on the localize
In dynamic wireless ad-hoc networks (DynWANs), autonomous computing devices set up a network for the communication needs of the moment. These networks require the implementation of a medium access control (MAC) layer. We consider MAC protocols for Dy