ترغب بنشر مسار تعليمي؟ اضغط هنا

Observational Constraints on the Rastall gravity from Rotation Curves of Low Surface Brightness Galaxies

150   0   0.0 ( 0 )
 نشر من قبل Zhaoyi Xu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Rastall gravity is a modification of Einsteins general relativity, in which the energy-momentum conservation is not satisfied and depends on the gradient of the Ricci curvature. It is in dispute whether the Rastall gravity is equivalent to the general relativity (GR). In this work, we constrain the theory using the rotation curves of Low Surface Brightness (LSB) spiral galaxies. Through fitting the rotation curves of LSB galaxies, we obtain the parameter $beta$ of the Rastall gravity. The $beta$ values of LSB galaxies satisfy Weak Energy Condition (WEC) and Strong Energy Condition(SEC). Combining the $beta$ values of type Ia supernovae and gravitational lensing of elliptical galaxies on the Rastall gravity, we conclude that the Rastall gravity is equivalent to the general relativity.

قيم البحث

اقرأ أيضاً

We present high-resolution rotation curves of a sample of 26 low surface brightness galaxies. From these curves we derive mass distributions using a variety of assumptions for the stellar mass-to-light ratio. We show that the predictions of current C old Dark Matter models for the density profiles of dark matter halos are inconsistent with the observed curves. The latter indicate a core-dominated structure, rather than the theoretically preferred cuspy structure.
114 - W.J.G. de Blok 2005
A recent study has claimed that the rotation curve shapes and mass densities of Low Surface Brightness (LSB) galaxies are largely consistent with $Lambda$CDM predictions, in contrast to a large body of observational work. I demonstrate that the metho d used to derive this conclusion is incapable of distinguishing the characteristic steep CDM mass-density distribution from the core-dominated mass-density distributions found observationally: even core-dominated pseudo-isothermal haloes would be inferred to be consistent with CDM. This method can therefore make no definitive statements on the (dis)agreement between the data and CDM simulations. After introducing an additional criterion that does take the slope of the mass-distribution into account I find that only about a quarter of the LSB galaxies investigated are possibly consistent with CDM. However, for most of these the fit parameters are so weakly constrained that this is not a strong conclusion. Only 3 out of 52 galaxies have tightly constrained solutions consistent with $Lambda$CDM. Two of these galaxies are likely dominated by stars, leaving only one possible dark matter dominated, CDM-consistent candidate, forming a mere 2 per cent of the total sample. These conclusions are based on comparison of data and simulations at identical radii and fits to the entire rotation curves. LSB galaxies that are consistent with CDM simulations, if they exist, seem to be rare indeed.
The existence of galaxies with a surface brightness $mu$ lower than the night sky has been known since three decades. Yet, their formation mechanism and emergence within a $rmLambda CDM$ universe has remained largely undetermined. For the first time, we investigated the origin of Low Surface Brightness (LSB) galaxies with M$_{star}$$sim$10$^{9.5-10}$M$_{odot}$, which we are able to reproduce within hydrodynamical cosmological simulations from the NIHAO suite. The simulated and observed LSBs share similar properties, having large HI reservoir, extended star formation histories and effective radii, low S{e}rsic index and slowly rising rotation curves. The formation mechanism of these objects is explored: simulated LSBs form as a result of co-planar co-rotating mergers and aligned accretion of gas at early times, while perpendicular mergers and mis-aligned gas accretion result in higher $mu$ galaxies by $z$=0. The larger the merger, the stronger the correlation between merger orbital configuration and final $mu$. While the halo spin parameter is consistently high in simulated LSB galaxies, the impact of halo concentration, feedback-driven gas outflows and merger time only plays a minor-to-no role in determining $mu$. Interestingly, the formation scenario of such `classical LSBs differs from the one of less massive, M$_{star}$$sim$10$^{7-9}$M$_{odot}$, Ultra-Diffuse Galaxies, the latter resulting from the effects of SNae driven gas outflows: a M$_{star}$ of $sim$10$^9$M$_{odot}$ thus represents the transition regime between a feedback-dominated to an angular momentum-dominated formation scenario in the LSB realm. Observational predictions are offered regarding spatially resolved star formation rates through LSB discs: these, together with upcoming surveys, can be used to verify the proposed emergence scenario of LSB galaxies.
Searches for low-surface-brightness galaxies (LSBGs) in galaxy surveys are plagued by the presence of a large number of artifacts (e.g., objects blended in the diffuse light from stars and galaxies, Galactic cirrus, star-forming regions in the arms o f spiral galaxies, etc.) that have to be rejected through time consuming visual inspection. In future surveys, which are expected to collect hundreds of petabytes of data and detect billions of objects, such an approach will not be feasible. We investigate the use of convolutional neural networks (CNNs) for the problem of separating LSBGs from artifacts in survey images. We take advantage of the fact that, for the first time, we have available a large number of labeled LSBGs and artifacts from the Dark Energy Survey, that we use to train, validate, and test a CNN model. That model, which we call DeepShadows, achieves a test accuracy of $92.0 %$, a significant improvement relative to feature-based machine learning models. We also study the ability to use transfer learning to adapt this model to classify objects from the deeper Hyper-Suprime-Cam survey, and we show that after the model is retrained on a very small sample from the new survey, it can reach an accuracy of $87.6%$. These results demonstrate that CNNs offer a very promising path in the quest to study the low-surface-brightness universe.
Dwarf and low surface brightness galaxies are ideal objects to test modified Newtonian dynamics (MOND), because in most of these galaxies the accelerations fall below the threshold below where MOND supposedly applies. We have selected from the litera ture a sample of 27 dwarf and low surface brightness galaxies. MOND is successful in explaining the general shape of the observed rotation curves for roughly three quarters of the galaxies in the sample presented here. However, for the remaining quarter, MOND does not adequately explain the observed rotation curves. Considering the uncertainties in distances and inclinations for the galaxies in our sample, a small fraction of poor MOND predictions is expected and is not necessarily a problem for MOND. We have also made fits taking the MOND acceleration constant, a_0, as a free parameter in order to identify any systematic trends. We find that there appears to be a correlation between central surface brightness and the best-fit value of a_0, in the sense that lower surface brightness galaxies tend to have lower a_0. However, this correlation depends strongly on a small number of galaxies whose rotation curves might be uncertain due to either bars or warps. Without these galaxies, there is less evidence of a trend, but the average value we find for a_0 ~ 0.7*10^-8 cm s^-2 is somewhat lower than derived from previous studies. Such lower fitted values of a_0 could occur if external gravitational fields are important.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا