ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing Modified Newtonian Dynamics with Rotation Curves of Dwarf and Low Surface Brightness Galaxies

116   0   0.0 ( 0 )
 نشر من قبل Rob Swaters
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dwarf and low surface brightness galaxies are ideal objects to test modified Newtonian dynamics (MOND), because in most of these galaxies the accelerations fall below the threshold below where MOND supposedly applies. We have selected from the literature a sample of 27 dwarf and low surface brightness galaxies. MOND is successful in explaining the general shape of the observed rotation curves for roughly three quarters of the galaxies in the sample presented here. However, for the remaining quarter, MOND does not adequately explain the observed rotation curves. Considering the uncertainties in distances and inclinations for the galaxies in our sample, a small fraction of poor MOND predictions is expected and is not necessarily a problem for MOND. We have also made fits taking the MOND acceleration constant, a_0, as a free parameter in order to identify any systematic trends. We find that there appears to be a correlation between central surface brightness and the best-fit value of a_0, in the sense that lower surface brightness galaxies tend to have lower a_0. However, this correlation depends strongly on a small number of galaxies whose rotation curves might be uncertain due to either bars or warps. Without these galaxies, there is less evidence of a trend, but the average value we find for a_0 ~ 0.7*10^-8 cm s^-2 is somewhat lower than derived from previous studies. Such lower fitted values of a_0 could occur if external gravitational fields are important.



قيم البحث

اقرأ أيضاً

We present MOND (Modified Newtonian Dynamics) fits to 15 rotation curves of LSB galaxies. Good fits are readily found, although for a few galaxies minor adjustments to the inclination are needed. Reasonable values for the stellar mass-to-light ratios are found, as well as an approximately constant value for the total (gas and stars) mass-to-light ratio. We show that the LSB galaxies investigated here lie on the one, unique Tully-Fisher relation, as predicted by MOND. The scatter on the Tully-Fisher relation can be completely explained by the observed scatter in the total mass-to-light ratio. We address the question of whether MOND can fit any arbitrary rotation curve by constructing a plausible fake model galaxy. While MOND is unable to fit this hypothetical galaxy, a normal dark halo fit is readily found, showing that dark matter fits are much less selective in producing fits. The good fits to rotation curves of LSB galaxies support MOND, especially as these are galaxies with large mass discrepancies deep in the MOND regime.
We present high-resolution rotation curves of a sample of 26 low surface brightness galaxies. From these curves we derive mass distributions using a variety of assumptions for the stellar mass-to-light ratio. We show that the predictions of current C old Dark Matter models for the density profiles of dark matter halos are inconsistent with the observed curves. The latter indicate a core-dominated structure, rather than the theoretically preferred cuspy structure.
114 - W.J.G. de Blok 2005
A recent study has claimed that the rotation curve shapes and mass densities of Low Surface Brightness (LSB) galaxies are largely consistent with $Lambda$CDM predictions, in contrast to a large body of observational work. I demonstrate that the metho d used to derive this conclusion is incapable of distinguishing the characteristic steep CDM mass-density distribution from the core-dominated mass-density distributions found observationally: even core-dominated pseudo-isothermal haloes would be inferred to be consistent with CDM. This method can therefore make no definitive statements on the (dis)agreement between the data and CDM simulations. After introducing an additional criterion that does take the slope of the mass-distribution into account I find that only about a quarter of the LSB galaxies investigated are possibly consistent with CDM. However, for most of these the fit parameters are so weakly constrained that this is not a strong conclusion. Only 3 out of 52 galaxies have tightly constrained solutions consistent with $Lambda$CDM. Two of these galaxies are likely dominated by stars, leaving only one possible dark matter dominated, CDM-consistent candidate, forming a mere 2 per cent of the total sample. These conclusions are based on comparison of data and simulations at identical radii and fits to the entire rotation curves. LSB galaxies that are consistent with CDM simulations, if they exist, seem to be rare indeed.
83 - R.H. Sanders 2018
I consider the observed rotation curves of 12 gas-dominated low-surface-brightness galaxies -- objects in which the mass of gas ranges between 2.2 and 27 times the mass of the stellar disk (mean=9.4). This means that, in the usual decomposition of ro tation curves into those resulting from various mass components, the mass-to-light ratio of the luminous stellar disk effectively vanishes as an additional adjustable parameter. It is seen that the observed rotation curves reflect the observed structure in gas surface density distribution often in detail. This fact is difficult to comprehend in the context of the dark matter paradigm where the dark halo completely dominates the gravitational potential in the low surface density systems; however it is expected result in the context of modified Newtonian dynamics (MOND) in which the baryonic matter is the only component. With MOND the calculated rotation curves are effectively parameter-free predictions.
Chameleon theories of gravity predict that the gaseous component of isolated dwarf galaxies rotates with a faster velocity than the stellar component. In this paper, we exploit this effect to obtain new constraints on the model parameters using the m easured rotation curves of six low surface brightness galaxies. For $f(R)$ theories, we rule out values of $f_{R0}>10^{-6}$. For more general theories, we find that the constraints from Cepheid variable stars are currently more competitive than the bounds we obtain here but we are able to rule out self-screening parameters $chi_c>10^{-6}$ for fifth-force strengths (coupling of the scalar to matter) as low as $0.05$ the Newtonian force. This region of parameter space has hitherto been inaccessible to astrophysical probes. We discuss the future prospects for improving these bounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا