ﻻ يوجد ملخص باللغة العربية
Hot electrons dominate the ultrafast ($sim$fs-ps) optical and electronic properties of metals and semiconductors and they are exploited in a variety of applications including photovoltaics and photodetection. We perform power-dependent third harmonic generation measurements on gated single-layer graphene and detect a significant deviation from the cubic power-law expected for a third harmonic generation process. We assign this to the presence of hot electrons. Our results indicate that the performance of nonlinear photonics devices based on graphene, such as optical modulators and frequency converters, can be affected by changes in the electronic temperature, which might occur due to increase of absorbed optical power or Joule heating.
Optical harmonic generation occurs when high intensity light ($>10^{10}$W/m$^{2}$) interacts with a nonlinear material. Electrical control of the nonlinear optical response enables applications such as gate-tunable switches and frequency converters.
The low-energy (intraband) range of the third harmonic generation of graphene in the terahertz regime is governed by the damping terms induced by the interactions. A controlled many-body description of the scattering processes is thus a compelling an
The valley degeneracy of electron states in graphene stimulates intensive research of valley-related optical and transport phenomena. While many proposals on how to manipulate valley states have been put forward, experimental access to the valley pol
Valley polarization in graphene breaks inversion symmetry and therefore leads to second-harmonic generation. We present a complete theory of this effect within a single-particle approximation. It is shown that this may be a sensitive tool to measure
The second-order nonlinear optical susceptibility $Pi^{(2)}$ for second harmonic generation is calculated for gapped graphene. The linear and second-order nonlinear plasmon excitations are investigated in context of second harmonic generation (SHG).