ﻻ يوجد ملخص باللغة العربية
Superconducting transmon qubits are of great interest for quantum computing and quantum simulation. A key component of quantum chemistry simulation algorithms is breaking up the evolution into small steps, which naturally leads to the need for non-maximally entangling, arbitrary CPHASE gates. Here we design such microwave-based gates using an analytically solvable approach leading to smooth, simple pulses. We use the local invariants of the evolution operator in $SU(4)$ to develop a method of constructing pulse protocols, which allows for the continuous tuning of the phase. We find CPHASE fidelities of more than $0.999$ and gate times as low as $100text{ ns}$.
We describe and implement a family of entangling gates activated by radio-frequency flux modulation applied to a tunable transmon that is statically coupled to a neighboring transmon. The effect of this modulation is the resonant exchange of photons
Building a scalable quantum computer requires developing appropriate models to understand and verify its complex quantum dynamics. We focus on superconducting quantum processors based on transmons for which full numerical simulations are already chal
Single-photon sources are of great interest because they are key elements in different promising applications of quantum technologies. Here we demonstrate a highly efficient tunable on-demand microwave single-photon source based on a transmon qubit w
We analyze the coupling of two qubits via an epitaxial semiconducting junction. In particular, we consider three configurations that include pairs of transmons or gatemons as well as gatemon-like two qubits formed by an epitaxial four-terminal juncti
We propose an implementation of a quantum router for microwave photons in a superconducting qubit architecture consisting of a transmon qubit, SQUIDs and a nonlinear capacitor. We model and analyze the dynamics of operation of the quantum switch usin