ترغب بنشر مسار تعليمي؟ اضغط هنا

Parametrically Activated Entangling Gates Using Transmon Qubits

69   0   0.0 ( 0 )
 نشر من قبل Shane Caldwell
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe and implement a family of entangling gates activated by radio-frequency flux modulation applied to a tunable transmon that is statically coupled to a neighboring transmon. The effect of this modulation is the resonant exchange of photons directly between levels of the two-transmon system, obviating the need for mediating qubits or resonator modes and allowing for the full utilization of all qubits in a scalable architecture. The resonance condition is selective in both the frequency and amplitude of modulation and thus alleviates frequency crowding. We demonstrate the use of three such resonances to produce entangling gates that enable universal quantum computation: one iSWAP gate and two distinct controlled Z gates. We report interleaved randomized benchmarking results indicating gate error rates of 6% for the iSWAP (duration 135ns) and 9% for the controlled Z gates (durations 175 ns and 270 ns), limited largely by qubit coherence.



قيم البحث

اقرأ أيضاً

Building a scalable quantum computer requires developing appropriate models to understand and verify its complex quantum dynamics. We focus on superconducting quantum processors based on transmons for which full numerical simulations are already chal lenging at the level of qubytes. It is thus highly desirable to develop accurate methods of modeling qubit networks that do not rely solely on numerical computations. Using systematic perturbation theory to large orders in the transmon regime, we derive precise analytic expressions of the transmon parameters. We apply our results to the case of parametrically-modulated transmons to study recently-implemented parametrically-activated entangling gates.
In state-of-the-art quantum computing platforms, including superconducting qubits and trapped ions, imperfections in the 2-qubit entangling gates are the dominant contributions of error to system-wide performance. Recently, a novel 2-qubit parametric gate was proposed and demonstrated with superconducting transmon qubits. This gate is activated through RF modulation of the transmon frequency and can be operated at an amplitude where the performance is first-order insensitive to flux-noise. In this work we experimentally validate the existence of this AC sweet spot and demonstrate its dependence on white noise power from room temperature electronics. With these factors in place, we measure coherence-limited entangling-gate fidelities as high as 99.2 $pm$ 0.15%.
Superconducting transmon qubits comprise one of the most promising platforms for quantum information processing due to their long coherence times and to their scalability into larger qubit networks. However, their weakly anharmonic spectrum leads to spectral crowding in multiqubit systems, making it challenging to implement fast, high-fidelity gates while avoiding leakage errors. To address this challenge, we use a protocol known as SWIPHT [Phys. Rev. B 91, 161405(R) (2015)], which yields smooth, simple microwave pulses designed to suppress leakage without sacrificing gate speed through spectral selectivity. Here, we determine the parameter regimes in which SWIPHT is effective and demonstrate that in these regimes it systematically produces two-qubit gate fidelities for cavity-coupled transmons in the range 99.6%-99.9% with gate times as fast as 23 ns. Our results are obtained from full numerical simulations that include current experimental levels of relaxation and dephasing. These high fidelities persist over a wide range of system parameters that encompass many current experimental setups and are insensitive to small parameter variations and pulse imperfections.
We propose a protocol to implement multi-qubit geometric gates (i.e., the M{o}lmer-S{o}rensen gate) using photonic cat qubits. These cat qubits stored in high-$Q$ resonators are promising for hardware-efficient universal quantum computing. Specifical ly, in the limit of strong two-photon drivings, phase-flip errors of the cat qubits are effectively suppressed, leaving only a bit-flip error to be corrected. A geometric evolution guarantees the robustness of the protocol against stochastic noise along the evolution path. Moreover, by changing detunings of the cavity-cavity couplings at a proper time, the protocol can be robust against control imperfections (e.g., the total evolution time) without introducing extra noises into the system. As a result, the gate can produce multi-mode entangled cat states in a short time with high fidelities.
Superconducting transmon qubits are of great interest for quantum computing and quantum simulation. A key component of quantum chemistry simulation algorithms is breaking up the evolution into small steps, which naturally leads to the need for non-ma ximally entangling, arbitrary CPHASE gates. Here we design such microwave-based gates using an analytically solvable approach leading to smooth, simple pulses. We use the local invariants of the evolution operator in $SU(4)$ to develop a method of constructing pulse protocols, which allows for the continuous tuning of the phase. We find CPHASE fidelities of more than $0.999$ and gate times as low as $100text{ ns}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا