ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical mode coupling and coherence in spin Hall nano-oscillator with perpendicular magnetic anisotropy

94   0   0.0 ( 0 )
 نشر من قبل Ronghua Liu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally study the dynamical modes excited by spin current in Spin Hall nano-oscillators based on the Pt/[Co/Ni] multilayers with perpendicular magnetic anisotropy. Both propagating spin wave and localized solitonic modes of the oscillation are achieved and controlled by varying the applied magnetic field and current. At room temperature, the generation linewidth broadening associated with mode hopping was observed at currents close to the transition between different modes and in the mode coexistence regimes. The mode hopping was suppressed at cryogenic temperatures, confirming that the coupling between modes is mediated by thermal magnons. We also demonstrate that coherent single-mode oscillations with linewidth of 5 MHz can be achieved without applying external magnetic field. Our results provide insight into the mechanisms controlling the dynamical coherence in nanomagnetic oscillators, and guidance for optimizing their applications in spin wave-based electronics.



قيم البحث

اقرأ أيضاً

We experimentally study spin-Hall nano-oscillators based on [Co/Ni] multilayers with perpendicular magnetic anisotropy. We show that these devices are capable of single-frequency auto-oscillations at current densities comparable to those in the in-pl ane magnetized oscillators. The demonstrated oscillators exhibit large magnetization precession amplitudes, and their oscillation frequency is highly tunable by the electric current. These features make them promising for applications in high-speed integrated microwave circuits.
Current induced spin wave excitations in spin transfer torque nano-contacts are known as a promising way to generate exchange-dominated spin waves at the nano-scale. It has been shown that when these systems are magnetized in the film plane, broken s patial symmetry of the field around the nano-contact induced by the Oersted field opens the possibility for spin wave mode co-existence including a non-linear self-localized spin-wave bullet and a propagating mode. By means of micromagnetic simulations, here we show that in systems with strong perpendicular magnetic anisotropy (PMA) in the free layer, two propagating spin wave modes with different frequency and spatial distribution can be excited simultaneously. Our results indicate that in-plane magnetized spin transfer nano-contacts in PMA materials do not host a solitonic self-localized spin-wave bullet, which is different from previous studies for systems with in plane magnetic anisotropy. This feature renders them interesting for nano-scale magnonic waveguides and crystals since magnon transport can be configured by tuning the applied current.
Spin Hall nano-oscillators (SHNOs) utilize pure spin currents to drive local regions of magnetic films and nanostructures into auto-oscillating precession. If such regions are placed in close proximity to each other they can interact and sometimes mu tually synchronize, in pairs or in short linear chains. Here we demonstrate robust mutual synchronization of two-dimensional SHNO arrays ranging from 2 x 2 to 8 x 8 nano-constrictions, observed both electrically and using micro-Brillouin Light Scattering microscopy. The signal quality factor, $Q=f/Delta f$, increases linearly with number of mutually synchronized nano-constrictions ($N$), reaching 170,000 in the largest arrays. While the microwave peak power first increases as $N^2$, it eventually levels off, indicating a non-zero relative phase shift between nano-constrictions. Our demonstration will enable the use of SHNO arrays in two-dimensional oscillator networks for high-quality microwave signal generation and neuromorphic computing.
Energy loss due to ohmic heating is a major bottleneck limiting down-scaling and speed of nano-electronic devices, and harvesting ohmic heat for signal processing is a major challenge in modern electronics. Here we demonstrate that thermal gradients arising from ohmic heating can be utilized for excitation of coherent auto-oscillations of magnetization and for generation of tunable microwave signals. The heat-driven dynamics is observed in $mathrm{Y_{3}Fe_{5}O_{12}/Pt}$ bilayer nanowires where ohmic heating of the Pt layer results in injection of pure spin current into the $mathrm{Y_{3}Fe_{5}O_{12}}$ layer. This leads to excitation of auto-oscillations of the $mathrm{Y_{3}Fe_{5}O_{12}}$ magnetization and generation of coherent microwave radiation. Our work paves the way towards spin caloritronic devices for microwave and magnonic applications.
We experimentally demonstrate that both quasi-linear and nonlinear self-localized bullet modes of magnetization auto-oscillation can be excited by dc current in the nano-gap spin Hall nano-oscillator, by utilizing the geometry with an extended gap. T he quasi-linear mode is stable at low driving currents, while the bullet mode is additionally excited at larger currents, and becomes increasingly dominant with increasing current. Time-resolved measurements show that the formation of the bullet mode is delayed relative to the quasi-linear mode by up to 100 nanoseconds, demonstrating that the mechanisms of the formation of these modes are fundamentally different. We discuss the relationship between the observed behaviors and the formation of an unstable nonlinear magnon condensate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا