ﻻ يوجد ملخص باللغة العربية
We propose a scheme for mixed dynamical decoupling (MDD), where we combine continuous dynamical decoupling with robust sequences of phased pulses. Specifically, we use two fields for decoupling, where the first continuous driving field creates dressed states that are robust to environmental noise. Then, a second field implements a robust sequence of phased pulses to perform
We show that topological equivalence classes of circles in a two-dimensional square lattice can be used to design dynamical decoupling procedures to protect qubits attached on the edges of the lattice. Based on the circles of the topologically trivia
We investigate the possibility to suppress interactions between a finite dimensional system and an infinite dimensional environment through a fast sequence of unitary kicks on the finite dimensional system. This method, called dynamical decoupling, i
We present rigorous performance bounds for the optimal dynamical decoupling pulse sequence protecting a quantum bit (qubit) against pure dephasing. Our bounds apply under the assumption of instantaneous pulses and of bounded perturbing environment an
Nuclear magnetic resonance (NMR) schemes can be applied to micron-, and nanometer-sized samples by the aid of quantum sensors such as nitrogen-vacancy (NV) color centers in diamond. These minute devices allow for magnetometry of nuclear spin ensemble
The validity of optimized dynamical decoupling (DD) is extended to analytically time dependent Hamiltonians. As long as an expansion in time is possible the time dependence of the initial Hamiltonian does not affect the efficiency of optimized dynami