ﻻ يوجد ملخص باللغة العربية
We present rigorous performance bounds for the optimal dynamical decoupling pulse sequence protecting a quantum bit (qubit) against pure dephasing. Our bounds apply under the assumption of instantaneous pulses and of bounded perturbing environment and qubit-environment Hamiltonians. We show that if the total sequence time is fixed the optimal sequence can be used to make the distance between the protected and unperturbed qubit states arbitrarily small in the number of applied pulses. If, on the other hand, the minimum pulse interval is fixed and the total sequence time is allowed to scale with the number of pulses, then longer sequences need not always be advantageous. The rigorous bound may serve as testbed for approximate treatments of optimal decoupling in bounded models of decoherence.
We study dynamical decoupling in a multi-qubit setting, where it is combined with quantum logic gates. This is illustrated in terms of computation using Heisenberg interactions only, where global decoupling pulses commute with the computation. We der
There are two distinct techniques of proven effectiveness for extending the coherence lifetime of spin qubits in environments of other spins. One is dynamical decoupling, whereby the qubit is subjected to a carefully timed sequence of control pulses;
Sensing the internal dynamics of individual nuclear spins or clusters of nuclear spins has recently become possible by observing the coherence decay of a nearby electronic spin: the weak magnetic noise is amplified by a periodic, multi-pulse decoupli
We study how dynamical decoupling (DD) pulse sequences can improve the reliability of quantum computers. We prove upper bounds on the accuracy of DD-protected quantum gates and derive sufficient conditions for DD-protected gates to outperform unprote
Realistic quantum computing is subjected to noise. A most important frontier in research of quantum computing is to implement noise-resilient quantum control over qubits. Dynamical decoupling can protect coherence of qubits. Here we demonstrate non-t