ترغب بنشر مسار تعليمي؟ اضغط هنا

Seshadri constants for vector bundles

76   0   0.0 ( 0 )
 نشر من قبل Aurel Mihai Fulger
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce Seshadri constants for line bundles in a relative setting. They generalize the classical Seshadri constants of line bundles on projective varieties and their extension to vector bundles studied by Beltrametti-Schneider-Sommese and Hacon. There are similarities to the classical theory. In particular, we give a Seshadri-type ampleness criterion, and we relate Seshadri constants to jet separation and to asymptotic base loci. We give three applications of our new version of Seshadri constants. First, a celebrated result of Mori can be restated as saying that any Fano manifold whose tangent bundle has positive Seshadri constant at a point is isomorphic to a projective space. We conjecture that the Fano condition can be removed. Among other results in this direction, we prove the conjecture for surfaces. Second, we restate a classical conjecture on the nef cone of self-products of curves in terms of semistability of higher conormal sheaves, which we use to identify new nef classes on self-products of curves. Third, we prove that our Seshadri constants can be used to control separation of jets for direct images of pluricanonical bundles, in the spirit of a relative Fujita-type conjecture of Popa and Schnell.

قيم البحث

اقرأ أيضاً

130 - Mihai Fulger 2017
We develop a local positivity theory for movable curves on projective varieties similar to the classical Seshadri constants of nef divisors. We give analogues of the Seshadri ampleness criterion, of a characterization of the augmented base locus of a big and nef divisor, and of the interpretation of Seshadri constants as an asymptotic measure of jet separation. We also study the case of arbitrary codimension.
We give a lower bound of the $delta$-invariants of ample line bundles in terms of Seshadri constants. As applications, we prove the uniform K-stability of infinitely many families of Fano hypersurfaces of arbitrarily large index, as well as the unifo rm K-stability of most families of smooth Fano threefolds of Picard number one.
We consider flags $E_bullet={Xsupset Esupset {q}}$, where $E$ is an exceptional divisor defining a non-positive at infinity divisorial valuation $ u_E$ of a Hirzebruch surface $mathbb{F}_delta$ and $X$ the surface given by $ u_E,$ and determine an an alogue of the Seshadri constant for pairs $( u_E,D)$, $D$ being a big divisor on $mathbb{F}_delta$. The main result is an explicit computation of the vertices of the Newton-Okounkov bodies of pairs $(E_bullet,D)$ as above, showing that they are quadrilaterals or triangles and distinguishing one case from another.
368 - Rong Du , Xinyi Fang , Yun Gao 2019
We study vector bundles on flag varieties over an algebraically closed field $k$. In the first part, we suppose $G=G_k(d,n)$ $(2le dleq n-d)$ to be the Grassmannian manifold parameterizing linear subspaces of dimension $d$ in $k^n$, where $k$ is an a lgebraically closed field of characteristic $p>0$. Let $E$ be a uniform vector bundle over $G$ of rank $rle d$. We show that $E$ is either a direct sum of line bundles or a twist of a pull back of the universal bundle $H_d$ or its dual $H_d^{vee}$ by a series of absolute Frobenius maps. In the second part, splitting properties of vector bundles on general flag varieties $F(d_1,cdots,d_s)$ in characteristic zero are considered. We prove a structure theorem for bundles over flag varieties which are uniform with respect to the $i$-th component of the manifold of lines in $F(d_1,cdots,d_s)$. Furthermore, we generalize the Grauert-M$ddot{text{u}}$lich-Barth theorem to flag varieties. As a corollary, we show that any strongly uniform $i$-semistable $(1le ile n-1)$ bundle over the complete flag variety splits as a direct sum of special line bundles.
Motivated by the problem of finding algebraic constructions of finite coverings in commutative algebra, the Steinitz realization problem in number theory, and the study of Hurwitz spaces in algebraic geometry, we investigate the vector bundles underl ying the structure sheaf of a finite flat branched covering. We prove that, up to a twist, every vector bundle on a smooth projective curve arises from the direct image of the structure sheaf of a smooth, connected branched cover.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا