ﻻ يوجد ملخص باللغة العربية
Motivated by the problem of finding algebraic constructions of finite coverings in commutative algebra, the Steinitz realization problem in number theory, and the study of Hurwitz spaces in algebraic geometry, we investigate the vector bundles underlying the structure sheaf of a finite flat branched covering. We prove that, up to a twist, every vector bundle on a smooth projective curve arises from the direct image of the structure sheaf of a smooth, connected branched cover.
We introduce Seshadri constants for line bundles in a relative setting. They generalize the classical Seshadri constants of line bundles on projective varieties and their extension to vector bundles studied by Beltrametti-Schneider-Sommese and Hacon.
We study vector bundles on flag varieties over an algebraically closed field $k$. In the first part, we suppose $G=G_k(d,n)$ $(2le dleq n-d)$ to be the Grassmannian manifold parameterizing linear subspaces of dimension $d$ in $k^n$, where $k$ is an a
In this paper we give a splitting criterion for uniform vector bundles on Fano manifolds covered by lines. As a consequence, we classify low rank uniform vector bundles on Hermitian symmetric spaces and Fano bundles of rank two on Grassmannians.
We give a new method to construct linear spaces of matrices of constant rank, based on truncated graded cohomology modules of certain vector bundles as well as on the existence of graded Artinian modules with pure resolutions. Our method allows one t
We consider a uniform $r$-bundle $E$ on a complex rational homogeneous space $X$ %over complex number field $mathbb{C}$ and show that if $E$ is poly-uniform with respect to all the special families of lines and the rank $r$ is less than or equal to