ﻻ يوجد ملخص باللغة العربية
Telescope scheduling is the task of determining the best sequence of observations (pointings and filter choices) for a survey system. Because it is computationally intractable to optimize over all possible multi-year sequences of observations, schedulers use heuristics to pick the best observation at a given time. A greedy scheduler selects the next observation by choosing whichever one maximizes a scalar merit function, which serves as a proxy for the scientific goals of the telescope. This sort of bottom-up approach for scheduling is not guaranteed to produce a schedule for which the sum of merit over all observations is maximized. As an alternative to greedy schedulers, we introduce ALTSched, which takes a top-down approach to scheduling. Instead of considering only the next observation, ALTSched makes global decisions about which area of sky and which filter to observe in, and then refines these decisions into a sequence of observations taken along the meridian to maximize SNR. We implement ALTSched for the Large Synoptic Survey Telescope (LSST), and show that it equals or outperforms the baseline greedy scheduler in essentially all quantitative performance metrics. Due to its simplicity, our implementation is considerably faster than OpSim, the simulated greedy scheduler currently used by the LSST Project: a full ten year survey can be simulated in 4 minutes, as opposed to tens of hours for OpSim. LSSTs hardware is fixed, so improving the scheduling algorithm is one of the only remaining ways to optimize LSSTs performance. We see ALTSched as a prototype scheduler that gives a lower bound on the performance achievable by LSST.
While the Atacama Large Millimeter/submillimeter Array (ALMA) is a uniquely powerful telescope, its impact in certain fields of astrophysics has been limited by observatory policies rather than the telescopes innate technical capabilities. In particu
This white paper is the result of the Tri-Agency Working Group (TAG) appointed to develop synergies between missions and is intended to clarify what LSST observations are needed in order to maximally enhance the combined science output of LSST and Eu
Perhaps the most exciting promise of the Rubin Observatory Legacy Survey of Space and Time (LSST) is its capability to discover phenomena never before seen or predicted from theory: true astrophysical novelties, but the ability of LSST to make these
The Large Synoptic Survey Telescope (LSST) can advance scientific frontiers beyond its groundbreaking 10-year survey. Here we explore opportunities for extended operations with proposal-based observing strategies, new filters, or transformed instrume
A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective ape