ﻻ يوجد ملخص باللغة العربية
The interplay between the nematic order and magnetism in FeSe is not yet well understood. There is a controversy concerning the relationship between orbital and spin degrees of freedom in FeSe and their relevance for superconductivity. Here we investigate the effect of S substitution on the nematic transition temperature ($T_{rm n}$) and the low-energy spin fluctuations (SF) in FeSe single crystals. We show that the low-energy SF emerge below the nematic transition. The difference between the onset temperature for the critical SF ($T_{rm SF}$) and $T_{rm n}$ is small for FeSe but significantly increases with S substitution. Below $T_{rm SF}$ the Korringa relation is violated and the effective muon hyperfine coupling constant changes a sign. Our results exclude a direct coupling of the low-energy SF to the electronic nematic order indicating a presence of multiple spin degrees of freedom in FeSe$_{rm 1-x}$S$_{rm x}$.
Electronic nematicity in correlated metals often occurs alongside another instability such as magnetism. As a result, the question remains whether nematicity alone can drive unconventional superconductivity or anomalous (quantum critical) transport i
The exotic normal state of iron chalcogenide superconductor FeSe, which exhibits vanishing magnetic order and possesses an electronic nematic order, triggered extensive explorations of its magnetic ground state. To understand its novel properties, we
Understanding superconductivity requires detailed knowledge of the normal electronic state from which it emerges. A nematic electronic state that breaks the rotational symmetry of the lattice can potentially promote unique scattering relevant for sup
The heavy-electron superconductor CeCoIn$_5$ exhibits a puzzling precursor state above its superconducting critical temperature at $T_c$ = 2.3 K. The thermopower and Nernst signal are anomalous. Below 15 K, the entropy current of the electrons underg
We report an experimental and computational study of the Hall effect in Mn$_{rm 1-x}$Fe$_{rm x}$Si, as complemented by measurements in Mn$_{rm 1-x}$Co$_{rm x}$Si, when helimagnetic order is suppressed under substitutional doping. For small $x$ the an