ترغب بنشر مسار تعليمي؟ اضغط هنا

Interplay between strong and weak measurement: Comparison of three experimental approaches to weak value estimation

61   0   0.0 ( 0 )
 نشر من قبل Karel Lemr
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Weak values are traditionally obtained using a weak interaction between the measured system and a pointer state. It has, however, been pointed out that weak coupling can be replaced by a carefully tailored strong interaction. This paper provides a direct comparison of two strong interaction-based approaches (strong interaction accompanied by either a suitably prepared pointer state or quantum erasure) and the traditional weak interaction-based method. Presented theoretical derivations explicitly prove analytical equivalence of these approaches which was subsequently certified by an experiment implemented on the platform of linear optics. We find that strong-interaction-based measurements are experimentally less demanding on this platform.


قيم البحث

اقرأ أيضاً

350 - Chun-wang Wu , Jie Zhang , Yi Xie 2018
In this paper, we explore the possibilities of realizing weak value amplification (WVA) using purely atomic degrees of freedom. Our scheme identifies the internal electronic states and external motional states of a single trapped $^{40}$Ca$^+$ ion as the system degree and pointer degree respectively, and their controllable weak coupling is provided by a bichromatic light field. In our experimental demonstration, by performing appropriate postselection on the internal states, a position displacement of 4 angstroms (in phase space) of the trapped ion is amplified to 10 nanometers. The sensitivity of the amplification effect to the relative phase of the quantum state is also demonstrated. The high operational flexibility of this procedure allows fully exploration of the peculiarities of WVA.
121 - Mu Yang , Qiang Li , Zheng-Hao Liu 2019
Weak measurement has been shown to play important roles in the investigation of both fundamental and practical problems. Anomalous weak values are generally believed to be observed only when post-selection is performed, i.e, only a particular subset of the data is considered. Here, we experimentally demonstrated an anomalous weak value can be obtained without discarding any data by performing a sequential weak measurement on a single-qubit system. By controlling the blazing density of the hologram on a spatial light modulator, the measurement strength can be conveniently controlled. Such an anomalous phenomenon disappears when the measurement strength becomes strong. Moreover, we find that the anomalous weak value can not be observed without post-selection when the sequential measurement is performed on each of the components of a two-qubit system, which confirms that the observed anomalous weak value is based on sequential weak measurement of two noncommutative operators.
We study the exact solution of the Schrodinger equation for the dissipative dynamics of a qubit, achieved by means of Short Iterative Lanczos method (SIL), which allows us to describe the qubit and the bath dynamics from weak to strong coupling regim es. We focus on two different models of a qubit in contact with the external environment: the first is the Spin Boson Model (SBM), which gives a description of the qubit in terms of static tunnelling energy and a bias field. The second model describes an externally driven qubit, where both the bias field and the tunnelling rate are controlled by a time-dependent magnetic field obeying to a finite time protocol. We show that in the SBM case, our solution correctly describes the crossover from coherent to incoherent behavior of the magnetization, occurring at the Toulouse point. Furthermore, we show that the bath response dramatically changes during the system dynamics, going from non-resonant at small times to resonant behavior at long times. When the external driving field is present, for fixed values of the drive duration our results show that the bath can provide beneficial effects to the success of the protocol. We find evidence for a complex interplay between non-adiabaticity of the protocol due to the external drive and dissipation effects, which strongly depends on the detailed form of the qubit-bath interaction.
Quantum measurement remains a puzzle through its stormy history from the birth of quantum mechanics to state-of-the-art quantum technologies. Two complementary measurement schemes have been widely investigated in a variety of quantum systems: von Neu manns projective strong measurement and Aharonovs weak measurement. Here, we report the observation of a weak-to-strong measurement transition in a single trapped $40Ca^+$ ion system. The transition is realized by tuning the interaction strength between the ions internal electronic state and its vibrational motion, which play the roles of the measured system and the measuring pointer, respectively. By pre- and post-selecting the internal state, a pointer state composed of two of the ions motional wavepackets is obtained, and its central-position shift, which corresponds to the measurement outcome, demonstrates the transition from the weak-value asymptotes to the expected-value asymptotes. Quantitatively, the weak-to-strong measurement transition is characterized by a universal transition factor $e^{-Gamma^2}$, where $Gamma$ is a dimensionless parameter related to the system-apparatus coupling. This transition, which continuously connects weak measurements and strong measurements, may open new experimental possibilities to test quantum foundations and prompt us to re-examine and improve the measurement schemes of related quantum technologies.
51 - A. Hariri , D. Curic , L. Giner 2019
The weak value, the average result of a weak measurement, has proven useful for probing quantum and classical systems. Examples include the amplification of small signals, investigating quantum paradoxes, and elucidating fundamental quantum phenomena such as geometric phase. A key characteristic of the weak value is that it can be complex, in contrast to a standard expectation value. However, typically only either the real or imaginary component of the weak value is determined in a given experimental setup. Weak measurements can be used to, in a sense, simultaneously measure non-commuting observables. This principle was used in the direct measurement of the quantum wavefunction. However, the wavefunctions real and imaginary components, given by a weak value, are determined in different setups or on separate ensembles of systems, putting the procedures directness in question. To address these issues, we introduce and experimentally demonstrate a general method to simultaneously read out both components of the weak value in a single experimental apparatus. In particular, we directly measure the polarization state of an ensemble of photons using weak measurement. With our method, each photon contributes to both the real and imaginary parts of the weak-value average. On a fundamental level, this suggests that the full complex weak value is a characteristic of each photon measured.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا