ترغب بنشر مسار تعليمي؟ اضغط هنا

Parametric amplification and noise-squeezing in room temperature atomic vapours

166   0   0.0 ( 0 )
 نشر من قبل Giovanni Barontini
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the use of parametric excitation to coherently manipulate the collective spin state of an atomic vapour at room temperature. Signatures of the parametric excitation are detected in the ground-state spin evolution. These include the excitation spectrum of the atomic coherences, which contains resonances at frequencies characteristic of the parametric process. The amplitudes of the signal quadratures show amplification and attenuation, and their noise distribution is characterized by a strong asymmetry, similarly to those observed in mechanical oscillators. The parametric excitation is produced by periodic modulation of the pumping beam, exploiting a Bell-Bloom-like technique widely used in atomic magnetometry. Notably, we find that the noise-squeezing obtained by this technique enhances the signal-to-noise ratio of the measurements up to a factor of 10, and improves the performance of a Bell-Bloom magnetometer by a factor of 3.

قيم البحث

اقرأ أيضاً

The Stark shift due to blackbody radiation (BBR) is the key factor limiting the performance of many atomic frequency standards, with the BBR environment inside the clock apparatus being difficult to characterize at a high level of precision. Here we demonstrate an in-vacuum radiation shield that furnishes a uniform, well-characterized BBR environment for the atoms in an ytterbium optical lattice clock. Operated at room temperature, this shield enables specification of the BBR environment to a corresponding fractional clock uncertainty contribution of $5.5 times 10^{-19}$. Combined with uncertainty in the atomic response, the total uncertainty of the BBR Stark shift is now $1times10^{-18}$. Further operation of the shield at elevated temperatures enables a direct measure of the BBR shift temperature dependence and demonstrates consistency between our evaluated BBR environment and the expected atomic response.
High precision interferometers are the building blocks of precision metrology and the ultimate interferometric sensitivity is limited by the quantum noise. Here we propose and experimentally demonstrate a compact quantum interferometer involving two optical parametric amplifiers and the squeezed states generated within the interferometer are directly used for the phase-sensing quantum state. By both squeezing shot noise and amplifying phase-sensing intensity the sensitivity improvement of $4.86pm 0.24$ dB beyond the standard quantum limit is deterministically realized and a minimum detectable phase smaller than that of all present interferometers under the same phase-sensing intensity is achieved. This interferometric system has significantly potential applications in a variety of measurements for tiny variances of physical quantities.
The radiation-pressure driven interaction of a coherent light field with a mechanical oscillator induces correlations between the amplitude and phase quadratures of the light. These correlations result in squeezed light -- light with quantum noise lo wer than shot noise in some quadratures, and higher in others. Due to this lower quantum uncertainty, squeezed light can be used to improve the sensitivity of precision measurements. In particular, squeezed light sources based on nonlinear optical crystals are being used to improve the sensitivity of gravitational wave (GW) detectors. For optomechanical squeezers, thermally driven fluctuations of the mechanical oscillators position makes it difficult to observe the quantum correlations at room temperature, and at low frequencies. Here we present a measurement of optomechanically (OM) squeezed light, performed at room-temperature, in a broad band near audio-frequency regions relevant to GW detectors. We observe sub-poissonian quantum noise in a frequency band of 30 kHz to 70 kHz with a maximum reduction of 0.7 $pm$ 0.1 dB below shot noise at 45 kHz. We present two independent methods of measuring this squeezing, one of which does not rely on calibration of shot noise.
83 - D. Main , T. M. Hird , S. Gao 2020
Quantum memories are a crucial technology for enabling large-scale quantum networks through synchronisation of probabilistic operations. Such networks impose strict requirements on quantum memory, such as storage time, retrieval efficiency, bandwidth , and scalability. On- and off-resonant ladder protocols on warm atomic vapour platforms are promising candidates, combining efficient high-bandwidth operation with low-noise on-demand retrieval. However, their storage time is severely limited by motion-induced dephasing caused by the broad velocity distribution of atoms comprising the vapour. In this paper, we demonstrate velocity selective optical pumping to overcome this decoherence mechanism. This will increase the achievable memory storage time of vapour memories. This technique can also be used for preparing arbitrarily shaped absorption profiles, for instance, preparing an atomic frequency comb absorption feature.
Properties of random and fluctuating systems are often studied through the use of Gaussian distributions. However, in a number of situations, rare events have drastic consequences, which can not be explained by Gaussian statistics. Considerable effor ts have thus been devoted to the study of non Gaussian fluctuations such as Levy statistics, generalizing the standard description of random walks. Unfortunately only macroscopic signatures, obtained by averaging over many random steps, are usually observed in physical systems. We present experimental results investigating the elementary process of anomalous diffusion of photons in hot atomic vapours. We measure the step size distribution of the random walk and show that it follows a power law characteristic of Levy flights.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا