ترغب بنشر مسار تعليمي؟ اضغط هنا

Room temperature optomechanical squeezing

106   0   0.0 ( 0 )
 نشر من قبل Nancy Aggarwal
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The radiation-pressure driven interaction of a coherent light field with a mechanical oscillator induces correlations between the amplitude and phase quadratures of the light. These correlations result in squeezed light -- light with quantum noise lower than shot noise in some quadratures, and higher in others. Due to this lower quantum uncertainty, squeezed light can be used to improve the sensitivity of precision measurements. In particular, squeezed light sources based on nonlinear optical crystals are being used to improve the sensitivity of gravitational wave (GW) detectors. For optomechanical squeezers, thermally driven fluctuations of the mechanical oscillators position makes it difficult to observe the quantum correlations at room temperature, and at low frequencies. Here we present a measurement of optomechanically (OM) squeezed light, performed at room-temperature, in a broad band near audio-frequency regions relevant to GW detectors. We observe sub-poissonian quantum noise in a frequency band of 30 kHz to 70 kHz with a maximum reduction of 0.7 $pm$ 0.1 dB below shot noise at 45 kHz. We present two independent methods of measuring this squeezing, one of which does not rely on calibration of shot noise.

قيم البحث

اقرأ أيضاً

Quantum control of a system requires the manipulation of quantum states faster than any decoherence rate. For mesoscopic systems, this has so far only been reached by few cryogenic systems. An important milestone towards quantum control is the so-cal led strong coupling regime, which in cavity optomechanics corresponds to an optomechanical coupling strength larger than cavity decay rate and mechanical damping. Here, we demonstrate the strong coupling regime at room temperature between a levitated silica particle and a high finesse optical cavity. Normal mode splitting is achieved by employing coherent scattering, instead of directly driving the cavity. The coupling strength achieved here approaches three times the cavity linewidth, crossing deep into the strong coupling regime. Entering the strong coupling regime is an essential step towards quantum control with mesoscopic objects at room temperature.
Establishing quantum entanglement between individual nodes is crucial for building large-scale quantum networks, enabling secure quantum communication, distributed quantum computing, enhanced quantum metrology and fundamental tests of quantum mechani cs. However, the shared entanglements have been merely observed in either extremely low-temperature or well-isolated systems, which limits the quantum networks for the real-life applications. Here, we report the realization of heralding quantum entanglement between two atomic ensembles at room temperature, where each of them contains billions of motional atoms. By measuring the mapped-out entangled state with quantum interference, concurrence and correlation, we strongly verify the existence of a single excitation delocalized in two atomic ensembles. Remarkably, the heralded quantum entanglement of atomic ensembles can be operated with the feature of delay-choice, which illustrates the essentiality of the built-in quantum memory. The demonstrated building block paves the way for constructing quantum networks and distributing entanglement across multiple remote nodes at ambient conditions.
We report on the use of parametric excitation to coherently manipulate the collective spin state of an atomic vapour at room temperature. Signatures of the parametric excitation are detected in the ground-state spin evolution. These include the excit ation spectrum of the atomic coherences, which contains resonances at frequencies characteristic of the parametric process. The amplitudes of the signal quadratures show amplification and attenuation, and their noise distribution is characterized by a strong asymmetry, similarly to those observed in mechanical oscillators. The parametric excitation is produced by periodic modulation of the pumping beam, exploiting a Bell-Bloom-like technique widely used in atomic magnetometry. Notably, we find that the noise-squeezing obtained by this technique enhances the signal-to-noise ratio of the measurements up to a factor of 10, and improves the performance of a Bell-Bloom magnetometer by a factor of 3.
The ability to induce, observe and control quantum coherent interactions in room temperature, electrically driven optoelectronic devices is of outmost significance for advancing quantum science and engineering towards practical applications. We demon strate here a quantum interference phenomena, Ramsey fringes, in an inhomogeneously broadened InAs/InP quantum dot (QD) ensemble in the form of a 1.5 mm long optical amplifier operating at room temperature. Observation of Ramsey fringes in semiconductor QD was previously achieved only at cryogenic temperatures and only in isolated single dot systems. A high-resolution pump probe scheme where both pulses are characterized by cross frequency resolved optical gating (X-FROG) reveals a clear oscillatory behavior both in the amplitude and the instantaneous frequency of the probe pulse with a period that equals one optical cycle at operational wavelength. Using nominal input delays of 600 to 900 fs and scanning the separation around each delay in 1 fs steps, we map the evolution of the material de-coherence and extract a coherence time. Moreover we notice a unique phenomenon, which can not be observed in single dot systems, that the temporal position of the output probe pulse also oscillates with the same periodicity but with a quarter cycle delay relative to the intensity variations. This delay is the time domain manifestation of coupling between the real and imaginary parts of the complex susceptibility.
A room-temperature mechanical oscillator undergoes thermal Brownian motion with an amplitude much larger than the amplitude associated with a single phonon of excitation. This motion can be read out and manipulated using laser light using a cavity-op tomechanical approach. By performing a strong quantum measurement, i.e., counting single photons in the sidebands imparted on a laser, we herald the addition and subtraction of single phonons on the 300K thermal motional state of a 4GHz mechanical oscillator. To understand the resulting mechanical state, we implement a tomography scheme and observe highly non-Gaussian phase-space distributions. Using a maximum likelihood method, we infer the density matrix of the oscillator and confirm the counter-intuitive doubling of the mean phonon number resulting from phonon addition and subtraction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا