ﻻ يوجد ملخص باللغة العربية
Dimensionality reduction is a classical technique widely used for data analysis. One foundational instantiation is Principal Component Analysis (PCA), which minimizes the average reconstruction error. In this paper, we introduce the multi-criteria dimensionality reduction problem where we are given multiple objectives that need to be optimized simultaneously. As an application, our model captures several fairness criteria for dimensionality reduction such as our novel Fair-PCA problem and the Nash Social Welfare (NSW) problem. In Fair-PCA, the input data is divided into $k$ groups, and the goal is to find a single $d$-dimensional representation for all groups for which the minimum variance of any one group is maximized. In NSW, the goal is to maximize the product of the individual variances of the groups achieved by the common low-dimensional space. Our main result is an exact polynomial-time algorithm for the two-criterion dimensionality reduction problem when the two criteria are increasing concave functions. As an application of this result, we obtain a polynomial time algorithm for Fair-PCA for $k=2$ groups and a polynomial time algorithm for NSW objective for $k=2$ groups. We also give approximation algorithms for $k>2$. Our technical contribution in the above results is to prove new low-rank properties of extreme point solutions to semi-definite programs. We conclude with experiments indicating the effectiveness of algorithms based on extreme point solutions of semi-definite programs on several real-world data sets.
Grassmann manifolds have been widely used to represent the geometry of feature spaces in a variety of problems in medical imaging and computer vision including but not limited to shape analysis, action recognition, subspace clustering and motion segm
We show how to sketch semidefinite programs (SDPs) using positive maps in order to reduce their dimension. More precisely, we use Johnsonhyp{}Lindenstrauss transforms to produce a smaller SDP whose solution preserves feasibility or approximates the v
Following the groundbreaking algorithm of Moser and Tardos for the Lovasz Local Lemma (LLL), there has been a plethora of results analyzing local search algorithms for various constraint satisfaction problems. The algorithms considered fall into two
Many, if not most network analysis algorithms have been designed specifically for single-relational networks; that is, networks in which all edges are of the same type. For example, edges may either represent friendship, kinship, or collaboration, bu
We discuss the theory of certain partially ordered sets that capture the structure of commutation classes of words in monoids. As a first application, it follows readily that counting words in commutation classes is #P-complete. We then apply the par