ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved Fault-Tolerant Quantum Simulation of Condensed-Phase Correlated Electrons via Trotterization

72   0   0.0 ( 0 )
 نشر من قبل Ryan Babbush
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent work has deployed linear combinations of unitaries techniques to reduce the cost of fault-tolerant quantum simulations of correlated electron models. Here, we show that one can sometimes improve upon those results with optimized implementations of Trotter-Suzuki-based product formulas. We show that low-order Trotter methods perform surprisingly well when used with phase estimation to compute relative precision quantities (e.g. energies per unit cell), as is often the goal for condensed-phase systems. In this context, simulations of the Hubbard and plane-wave electronic structure models with $N < 10^5$ fermionic modes can be performed with roughly $O(1)$ and $O(N^2)$ T complexities. We perform numerics revealing tradeoffs between the error and gate complexity of a Trotter step; e.g., we show that split-operator techniques have less Trotter error than popular alternatives. By compiling to surface code fault-tolerant gates and assuming error rates of one part per thousand, we show that one can error-correct quantum simulations of interesting, classically intractable instances with a few hundred thousand physical qubits.

قيم البحث

اقرأ أيضاً

Digital quantum simulators provide a diversified tool for solving the evolution of quantum systems with complicated Hamiltonians and hold great potential for a wide range of applications. Although much attention is paid to the unitary evolution of cl osed quantum systems, dissipation and noise are vital in understanding the dynamics of practical quantum systems. In this work, we experimentally demonstrate a digital simulation of an open quantum system in a controllable Markovian environment with the assistance of a single ancillary qubit. By Trotterizing the quantum Liouvillians, the continuous evolution of an open quantum system is effectively realized, and its application in error mitigation is demonstrated by adjusting the simulated noise intensities. High-order Trotter for open quantum dynamics is also experimentally investigated and shows higher accuracy. Our results represent a significant step towards hardware-efficient simulation of open quantum systems and error mitigation in quantum algorithms in noisy intermediate-scale quantum systems.
We explain how to combine holonomic quantum computation (HQC) with fault tolerant quantum error correction. This establishes the scalability of HQC, putting it on equal footing with other models of computation, while retaining the inherent robustness the method derives from its geometric nature.
We consider simulating quantum systems on digital quantum computers. We show that the performance of quantum simulation can be improved by simultaneously exploiting commutativity of the target Hamiltonian, sparsity of interactions, and prior knowledg e of the initial state. We achieve this using Trotterization for a class of interacting electrons that encompasses various physical systems, including the plane-wave-basis electronic structure and the Fermi-Hubbard model. We estimate the simulation error by taking the transition amplitude of nested commutators of the Hamiltonian terms within the $eta$-electron manifold. We develop multiple techniques for bounding the transition amplitude and expectation of general fermionic operators, which may be of independent interest. We show that it suffices to use $left(frac{n^{5/3}}{eta^{2/3}}+n^{4/3}eta^{2/3}right)n^{o(1)}$ gates to simulate electronic structure in the plane-wave basis with $n$ spin orbitals and $eta$ electrons, improving the best previous result in second quantization up to a negligible factor while outperforming the first-quantized simulation when $n=eta^{2-o(1)}$. We also obtain an improvement for simulating the Fermi-Hubbard model. We construct concrete examples for which our bounds are almost saturated, giving a nearly tight Trotterization of interacting electrons.
Designing encoding and decoding circuits to reliably send messages over many uses of a noisy channel is a central problem in communication theory. When studying the optimal transmission rates achievable with asymptotically vanishing error it is usual ly assumed that these circuits can be implemented using noise-free gates. While this assumption is satisfied for classical machines in many scenarios, it is not expected to be satisfied in the near term future for quantum machines where decoherence leads to faults in the quantum gates. As a result, fundamental questions regarding the practical relevance of quantum channel coding remain open. By combining techniques from fault-tolerant quantum computation with techniques from quantum communication, we initiate the study of these questions. We introduce fault-tolera
98 - Kai Sun , Jin-Shi Xu , Xiao-Ye Xu 2020
A major challenge in practical quantum computation is the ineludible errors caused by the interaction of quantum systems with their environment. Fault-tolerant schemes, in which logical qubits are encoded by several physical qubits, enable correct ou tput of logical qubits under the presence of errors. However, strict requirements to encode qubits and operators render the implementation of a full fault-tolerant computation challenging even for the achievable noisy intermediate-scale quantum technology. Here, we experimentally demonstrate the existence of the threshold in a special fault-tolerant protocol. Four physical qubits are implemented using 16 optical spatial modes, in which 8 modes are used to encode two logical qubits. The experimental results clearly show that the probability of correct output in the circuit, formed with fault-tolerant gates, is higher than that in the corresponding non-encoded circuit when the error rate is below the threshold. In contrast, when the error rate is above the threshold, no advantage is observed in the fault-tolerant implementation. The developed high-accuracy optical system may provide a reliable platform to investigate error propagation in more complex circuits with fault-tolerant gates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا