ترغب بنشر مسار تعليمي؟ اضغط هنا

Differentiable Scene Graphs

133   0   0.0 ( 0 )
 نشر من قبل Roei Herzig
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Reasoning about complex visual scenes involves perception of entities and their relations. Scene graphs provide a natural representation for reasoning tasks, by assigning labels to both entities (nodes) and relations (edges). Unfortunately, reasoning systems based on SGs are typically trained in a two-step procedure: First, training a model to predict SGs from images; Then, a separate model is created to reason based on predicted SGs. In many domains, it is preferable to train systems jointly in an end-to-end manner, but SGs are not commonly used as intermediate components in visual reasoning systems because being discrete and sparse, scene-graph representations are non-differentiable and difficult to optimize. Here we propose Differentiable Scene Graphs (DSGs), an image representation that is amenable to differentiable end-to-end optimization, and requires supervision only from the downstream tasks. DSGs provide a dense representation for all regions and pairs of regions, and do not spend modelling capacity on areas of the images that do not contain objects or relations of interest. We evaluate our model on the challenging task of identifying referring relationships (RR) in three benchmark datasets, Visual Genome, VRD and CLEVR. We describe a multi-task objective, and train in an end-to-end manner supervised by the downstream RR task. Using DSGs as an intermediate representation leads to new state-of-the-art performance.



قيم البحث

اقرأ أيضاً

Scene graphs are powerful representations that parse images into their abstract semantic elements, i.e., objects and their interactions, which facilitates visual comprehension and explainable reasoning. On the other hand, commonsense knowledge graphs are rich repositories that encode how the world is structured, and how general concepts interact. In this paper, we present a unified formulation of these two constructs, where a scene graph is seen as an image-conditioned instantiation of a commonsense knowledge graph. Based on this new perspective, we re-formulate scene graph generation as the inference of a bridge between the scene and commonsense graphs, where each entity or predicate instance in the scene graph has to be linked to its corresponding entity or predicate class in the commonsense graph. To this end, we propose a novel graph-based neural network that iteratively propagates information between the two graphs, as well as within each of them, while gradually refining their bridge in each iteration. Our Graph Bridging Network, GB-Net, successively infers edges and nodes, allowing to simultaneously exploit and refine the rich, heterogeneous structure of the interconnected scene and commonsense graphs. Through extensive experimentation, we showcase the superior accuracy of GB-Net compared to the most recent methods, resulting in a new state of the art. We publicly release the source code of our method.
Recently, segmentation-based methods are quite popular in scene text detection, as the segmentation results can more accurately describe scene text of various shapes such as curve text. However, the post-processing of binarization is essential for se gmentation-based detection, which converts probability maps produced by a segmentation method into bounding boxes/regions of text. In this paper, we propose a module named Differentiable Binarization (DB), which can perform the binarization process in a segmentation network. Optimized along with a DB module, a segmentation network can adaptively set the thresholds for binarization, which not only simplifies the post-processing but also enhances the performance of text detection. Based on a simple segmentation network, we validate the performance improvements of DB on five benchmark datasets, which consistently achieves state-of-the-art results, in terms of both detection accuracy and speed. In particular, with a light-weight backbone, the performance improvements by DB are significant so that we can look for an ideal tradeoff between detection accuracy and efficiency. Specifically, with a backbone of ResNet-18, our detector achieves an F-measure of 82.8, running at 62 FPS, on the MSRA-TD500 dataset. Code is available at: https://github.com/MhLiao/DB
Differentiable architecture search is prevalent in the field of NAS because of its simplicity and efficiency, where two paradigms, multi-path algorithms and single-path methods, are dominated. Multi-path framework (e.g. DARTS) is intuitive but suffer s from memory usage and training collapse. Single-path methods (e.g.GDAS and ProxylessNAS) mitigate the memory issue and shrink the gap between searching and evaluation but sacrifice the performance. In this paper, we propose a conceptually simple yet efficient method to bridge these two paradigms, referred as Mutually-aware Sub-Graphs Differentiable Architecture Search (MSG-DAS). The core of our framework is a differentiable Gumbel-TopK sampler that produces multiple mutually exclusive single-path sub-graphs. To alleviate the severer skip-connect issue brought by multiple sub-graphs setting, we propose a Dropblock-Identity module to stabilize the optimization. To make best use of the available models (super-net and sub-graphs), we introduce a memory-efficient super-net guidance distillation to improve training. The proposed framework strikes a balance between flexible memory usage and searching quality. We demonstrate the effectiveness of our methods on ImageNet and CIFAR10, where the searched models show a comparable performance as the most recent approaches.
Image manipulation can be considered a special case of image generation where the image to be produced is a modification of an existing image. Image generation and manipulation have been, for the most part, tasks that operate on raw pixels. However, the remarkable progress in learning rich image and object representations has opened the way for tasks such as text-to-image or layout-to-image generation that are mainly driven by semantics. In our work, we address the novel problem of image manipulation from scene graphs, in which a user can edit images by merely applying changes in the nodes or edges of a semantic graph that is generated from the image. Our goal is to encode image information in a given constellation and from there on generate new constellations, such as replacing objects or even changing relationships between objects, while respecting the semantics and style from the original image. We introduce a spatio-semantic scene graph network that does not require direct supervision for constellation changes or image edits. This makes it possible to train the system from existing real-world datasets with no additional annotation effort.
Recent implicit neural rendering methods have demonstrated that it is possible to learn accurate view synthesis for complex scenes by predicting their volumetric density and color supervised solely by a set of RGB images. However, existing methods ar e restricted to learning efficient representations of static scenes that encode all scene objects into a single neural network, and lack the ability to represent dynamic scenes and decompositions into individual scene objects. In this work, we present the first neural rendering method that decomposes dynamic scenes into scene graphs. We propose a learned scene graph representation, which encodes object transformation and radiance, to efficiently render novel arrangements and views of the scene. To this end, we learn implicitly encoded scenes, combined with a jointly learned latent representation to describe objects with a single implicit function. We assess the proposed method on synthetic and real automotive data, validating that our approach learns dynamic scenes -- only by observing a video of this scene -- and allows for rendering novel photo-realistic views of novel scene compositions with unseen sets of objects at unseen poses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا