ﻻ يوجد ملخص باللغة العربية
In this work we investigate a preferential attachment model whose parameter is a function $f:mathbb{N}to[0,1]$ that drives the asymptotic proportion between the numbers of vertices and edges of the graph. We investigate topological features of the graphs, proving general bounds for the diameter and the clique number. Our results regarding the diameter are sharp when $f$ is a regularly varying function at infinity with strictly negative index of regular variation $-gamma$. For this particular class, we prove a characterization for the diameter that depends only on $-gamma$. More specifically, we prove that the diameter of such graphs is of order $1/gamma$ with high probability, although its vertex set order goes to infinity polynomially. Sharp results for the diameter for a wide class of slowly varying functions are also obtained. The almost sure convergence for the properly normalized logarithm of the clique number of the graphs generated by slowly varying functions is also proved.
We propose a random graph model with preferential attachment rule and emph{edge-step functions} that govern the growth rate of the vertex set. We study the effect of these functions on the empirical degree distribution of these random graphs. More sp
Consider the normalized adjacency matrices of random $d$-regular graphs on $N$ vertices with fixed degree $dgeq3$. We prove that, with probability $1-N^{-1+{varepsilon}}$ for any ${varepsilon} >0$, the following two properties hold as $N to infty$ pr
For random $d$-regular graphs on $N$ vertices with $1 ll d ll N^{2/3}$, we develop a $d^{-1/2}$ expansion of the local eigenvalue distribution about the Kesten-McKay law up to order $d^{-3}$. This result is valid up to the edge of the spectrum. It im
In this work we perform a detailed statistical analysis of topological and spectral properties of random geometric graphs (RGGs); a graph model used to study the structure and dynamics of complex systems embedded in a two dimensional space. RGGs, $G(
We consider the Erdos-Renyi random graph G(n,p) inside the critical window, where p = 1/n + lambda * n^{-4/3} for some lambda in R. We proved in a previous paper (arXiv:0903.4730) that considering the connected components of G(n,p) as a sequence of m