ﻻ يوجد ملخص باللغة العربية
For random $d$-regular graphs on $N$ vertices with $1 ll d ll N^{2/3}$, we develop a $d^{-1/2}$ expansion of the local eigenvalue distribution about the Kesten-McKay law up to order $d^{-3}$. This result is valid up to the edge of the spectrum. It implies that the eigenvalues of such random regular graphs are more rigid than those of ErdH{o}s-Renyi graphs of the same average degree. As a first application, for $1 ll d ll N^{2/3}$, we show that all nontrivial eigenvalues of the adjacency matrix are with very high probability bounded in absolute value by $(2 + o(1)) sqrt{d - 1}$. As a second application, for $N^{2/9} ll d ll N^{1/3}$, we prove that the extremal eigenvalues are concentrated at scale $N^{-2/3}$ and their fluctuations are governed by Tracy-Widom statistics. Thus, in the same regime of $d$, $52%$ of all $d$-regular graphs have second-largest eigenvalue strictly less than $2 sqrt{d - 1}$.
We consider the sum of two large Hermitian matrices $A$ and $B$ with a Haar unitary conjugation bringing them into a general relative position. We prove that the eigenvalue density on the scale slightly above the local eigenvalue spacing is asymptoti
Consider the normalized adjacency matrices of random $d$-regular graphs on $N$ vertices with fixed degree $dgeq3$. We prove that, with probability $1-N^{-1+{varepsilon}}$ for any ${varepsilon} >0$, the following two properties hold as $N to infty$ pr
Consider a random regular graph with degree $d$ and of size $n$. Assign to each edge an i.i.d. exponential random variable with mean one. In this paper we establish a precise asymptotic expression for the maximum number of edges on the shortest-weigh
We study a generalisation of the random recursive tree (RRT) model and its multigraph counterpart, the uniform directed acyclic graph (DAG). Here, vertices are equipped with a random vertex-weight representing initial inhomogeneities in the network,
In [17], the authors have defined an annealed Ising model on random graphs and proved limit theorems for the magnetization of this model on some random graphs including random 2-regular graphs. Then in [11], we generalized their results to the class