ترغب بنشر مسار تعليمي؟ اضغط هنا

G-IOTA: Fair and confidence aware tangle

56   0   0.0 ( 0 )
 نشر من قبل Gewu Bu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Gewu Bu




اسأل ChatGPT حول البحث

This paper proposes strategies to improve the IOTA tangle in terms of resilience to splitting attacks. Our contribution is two fold. First, we define the notion of confidence fairness for tips selection algorithms to guarantee the first approval for all honest tips. Then, we analyze IOTA-tangle from the point of view of confidence fairness and identify its drawbacks. Second, we propose a new selection mechanism, G-IOTA, that targets to protect tips left behind. G-IOTA therefore has a good confidence fairness. G-IOTA lets honest transactions increase their confidence efficiently. Furthermore, G-IOTA includes an incentive mechanism for users who respect the algorithm and punishes conflicting transactions. Additionally, G-IOTA provides a mutual supervision mechanism that reduces the benefits of speculative and lazy behaviours.



قيم البحث

اقرأ أيضاً

System noise can negatively impact the performance of HPC systems, and the interconnection network is one of the main factors contributing to this problem. To mitigate this effect, adaptive routing sends packets on non-minimal paths if they are less congested. However, while this may mitigate interference caused by congestion, it also generates more traffic since packets traverse additional hops, causing in turn congestion on other applications and on the application itself. In this paper, we first describe how to estimate network noise. By following these guidelines, we show how noise can be reduced by using routing algorithms which select minimal paths with a higher probability. We exploit this knowledge to design an algorithm which changes the probability of selecting minimal paths according to the application characteristics. We validate our solution on microbenchmarks and real-world applications on two systems relying on a Dragonfly interconnection network, showing noise reduction and performance improvement.
Modern distributed machine learning (ML) training workloads benefit significantly from leveraging GPUs. However, significant contention ensues when multiple such workloads are run atop a shared cluster of GPUs. A key question is how to fairly apporti on GPUs across workloads. We find that established cluster scheduling disciplines are a poor fit because of ML workloads unique attributes: ML jobs have long-running tasks that need to be gang-scheduled, and their performance is sensitive to tasks relative placement. We propose Themis, a new scheduling framework for ML training workloads. Its GPU allocation policy enforces that ML workloads complete in a finish-time fair manner, a new notion we introduce. To capture placement sensitivity and ensure efficiency, Themis uses a two-level scheduling architecture where ML workloads bid on available resources that are offered in an auction run by a central arbiter. Our auction design allocates GPUs to winning bids by trading off efficiency for fairness in the short term but ensuring finish-time fairness in the long term. Our evaluation on a production trace shows that Themis can improve fairness by more than 2.25X and is ~5% to 250% more cluster efficient in comparison to state-of-the-art schedulers.
Rankings of people and items has been highly used in selection-making, match-making, and recommendation algorithms that have been deployed on ranging of platforms from employment websites to searching tools. The ranking position of a candidate affect s the amount of opportunities received by the ranked candidate. It has been observed in several works that the ranking of candidates based on their score can be biased for candidates belonging to the minority community. In recent works, the fairness-aware representative ranking was proposed for computing fairness-aware re-ranking of results. The proposed algorithm achieves the desired distribution of top-ranked results with respect to one or more protected attributes. In this work, we highlight the bias in fairness-aware representative ranking for an individual as well as for a group if the group is sub-active on the platform. We define individual unfairness and group unfairness and propose methods to generate ideal individual and group fair representative ranking if the universal representation ratio is known or unknown. The simulation results show the quantified analysis of fairness in the proposed solutions. The paper is concluded with open challenges and further directions.
With the emerging needs of creating fairness-aware solutions for search and recommendation systems, a daunting challenge exists of evaluating such solutions. While many of the traditional information retrieval (IR) metrics can capture the relevance, diversity and novelty for the utility with respect to users, they are not suitable for inferring whether the presented results are fair from the perspective of responsible information exposure. On the other hand, various fairness metrics have been proposed but they do not account for the user utility or do not measure it adequately. To address this problem, we propose a new metric called Fairness-Aware IR (FAIR). By unifying standard IR metrics and fairness measures into an integrated metric, this metric offers a new perspective for evaluating fairness-aware ranking results. Based on this metric, we developed an effective ranking algorithm that jointly optimized user utility and fairness. The experimental results showed that our FAIR metric could highlight results with good user utility and fair information exposure. We showed how FAIR related to existing metrics and demonstrated the effectiveness of our FAIR-based algorithm. We believe our work opens up a new direction of pursuing a computationally feasible metric for evaluating and implementing the fairness-aware IR systems.
Confidence-aware learning is proven as an effective solution to prevent networks becoming overconfident. We present a confidence-aware camouflaged object detection framework using dynamic supervision to produce both accurate camouflage map and meanin gful confidence representing model awareness about the current prediction. A camouflaged object detection network is designed to produce our camouflage prediction. Then, we concatenate it with the input image and feed it to the confidence estimation network to produce an one channel confidence map.We generate dynamic supervision for the confidence estimation network, representing the agreement of camouflage prediction with the ground truth camouflage map. With the produced confidence map, we introduce confidence-aware learning with the confidence map as guidance to pay more attention to the hard/low-confidence pixels in the loss function. We claim that, once trained, our confidence estimation network can evaluate pixel-wise accuracy of the prediction without relying on the ground truth camouflage map. Extensive results on four camouflaged object detection testing datasets illustrate the superior performance of the proposed model in explaining the camouflage prediction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا