ترغب بنشر مسار تعليمي؟ اضغط هنا

Pretraining-Based Natural Language Generation for Text Summarization

145   0   0.0 ( 0 )
 نشر من قبل Haoyu Zhang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose a novel pretraining-based encoder-decoder framework, which can generate the output sequence based on the input sequence in a two-stage manner. For the encoder of our model, we encode the input sequence into context representations using BERT. For the decoder, there are two stages in our model, in the first stage, we use a Transformer-based decoder to generate a draft output sequence. In the second stage, we mask each word of the draft sequence and feed it to BERT, then by combining the input sequence and the draft representation generated by BERT, we use a Transformer-based decoder to predict the refined word for each masked position. To the best of our knowledge, our approach is the first method which applies the BERT into text generation tasks. As the first step in this direction, we evaluate our proposed method on the text summarization task. Experimental results show that our model achieves new state-of-the-art on both CNN/Daily Mail and New York Times datasets.



قيم البحث

اقرأ أيضاً

In this paper, we describe ALTER, an auxiliary text rewriting tool that facilitates the rewriting process for natural language generation tasks, such as paraphrasing, text simplification, fairness-aware text rewriting, and text style transfer. Our to ol is characterized by two features, i) recording of word-level revision histories and ii) flexible auxiliary edit support and feedback to annotators. The text rewriting assist and traceable rewriting history are potentially beneficial to the future research of natural language generation.
Natural language generation (NLG) systems are commonly evaluated using n-gram overlap measures (e.g. BLEU, ROUGE). These measures do not directly capture semantics or speaker intentions, and so they often turn out to be misaligned with our true goals for NLG. In this work, we argue instead for communication-based evaluations: assuming the purpose of an NLG system is to convey information to a reader/listener, we can directly evaluate its effectiveness at this task using the Rational Speech Acts model of pragmatic language use. We illustrate with a color reference dataset that contains descriptions in pre-defined quality categories, showing that our method better aligns with these quality categories than do any of the prominent n-gram overlap methods.
In Natural Language Generation (NLG), End-to-End (E2E) systems trained through deep learning have recently gained a strong interest. Such deep models need a large amount of carefully annotated data to reach satisfactory performance. However, acquirin g such datasets for every new NLG application is a tedious and time-consuming task. In this paper, we propose a semi-supervised deep learning scheme that can learn from non-annotated data and annotated data when available. It uses an NLG and a Natural Language Understanding (NLU) sequence-to-sequence models which are learned jointly to compensate for the lack of annotation. Experiments on two benchmark datasets show that, with limited amount of annotated data, the method can achieve very competitive results while not using any pre-processing or re-scoring tricks. These findings open the way to the exploitation of non-annotated datasets which is the current bottleneck for the E2E NLG system development to new applications.
An interpretable system for open-domain reasoning needs to express its reasoning process in a transparent form. Natural language is an attractive representation for this purpose -- it is both highly expressive and easy for humans to understand. Howev er, manipulating natural language statements in logically consistent ways is hard: models must cope with variation in how meaning is expressed while remaining precise. In this paper, we describe ParaPattern, a method for building models to generate deductive inferences from diverse natural language inputs without direct human supervision. We train BART-based models (Lewis et al., 2020) to generate the result of applying a particular logical operation to one or more premise statements. Crucially, we develop a largely automated pipeline for constructing suitable training examples from Wikipedia. We evaluate our models using out-of-domain sentence compositions from the QASC (Khot et al., 2020) and EntailmentBank (Dalvi et al., 2021) datasets as well as targeted perturbation sets. Our results show that our models are substantially more accurate and flexible than baseline systems. ParaPattern achieves 85% validity on examples of the substitution operation from EntailmentBank without the use of any in-domain training data, matching the performance of a model fine-tuned for EntailmentBank. The full source code for our method is publicly available.
Text generation has become one of the most important yet challenging tasks in natural language processing (NLP). The resurgence of deep learning has greatly advanced this field by neural generation models, especially the paradigm of pretrained langua ge models (PLMs). In this paper, we present an overview of the major advances achieved in the topic of PLMs for text generation. As the preliminaries, we present the general task definition and briefly describe the mainstream architectures of PLMs for text generation. As the core content, we discuss how to adapt existing PLMs to model different input data and satisfy special properties in the generated text. We further summarize several important fine-tuning strategies for text generation. Finally, we present several future directions and conclude this paper. Our survey aims to provide text generation researchers a synthesis and pointer to related research.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا