ﻻ يوجد ملخص باللغة العربية
In this paper, we study stability and instability problem for type-II partitioning problem. First, we make a complete classification of stable type-II stationary hypersurfaces in a ball in a space form as totally geodesic $n$-balls. Second, for general ambient spaces and convex domains, we give some topological restriction for type-II stable stationary immersed surfaces in two dimension. Third, we give a lower bound for the Morse index for type-II stationary hypersurfaces in terms of their topology.
We consider a complete Riemannian manifold M whose boundary is a disjoint union of finitely many complete connected Riemannian manifolds. We compute the index of a local boundary value problem for a strongly Callias-type operator on M. Our result ext
We establish a new symmetrization procedure for the isoperimetric problem in symmetric spaces of noncompact type. This symmetrization generalizes the well known Steiner symmetrization in euclidean space. In contrast to the classical construction the
Type A surfaces are the locally homogeneous affine surfaces which can be locally described by constant Christoffel symbols. We address the issue of the geodesic completeness of these surfaces: we show that some models for Type A surfaces are geodesic
In this paper, we develop the blow-up analysis and establish the energy quantization for solutions to super-Liouville type equations on Riemann surfaces with conical singularities at the boundary. In other problems in geometric analysis, the blow-up
Teissier problem aims to characterize the equality case of Khovanskii-Teissier type inequality for (1,1)-classes on a compact Kahler manifold. When each of the involved (1,1)-classes is assumed to be nef and big, this problem has been solved by the p