ﻻ يوجد ملخص باللغة العربية
Type A surfaces are the locally homogeneous affine surfaces which can be locally described by constant Christoffel symbols. We address the issue of the geodesic completeness of these surfaces: we show that some models for Type A surfaces are geodesically complete, that some others admit an incomplete geodesic but model geodesically complete surfaces, and that there are also others which do not model any complete surface. Our main result provides a way of determining whether a given set of constant Christoffel symbols can model a complete surface.
We define the notion of geodesic completeness for semi-Riemannian metrics of low regularity in the framework of the geometric theory of generalized functions. We then show completeness of a wide class of impulsive gravitational wave space-times.
In this paper we investigate geodesic completeness of left-invariant Lorentzian metrics on a simple Lie group $G$ when there exists a left-invariant Killing vector field $Z$ on $G$. Among other results, it is proved that if $Z$ is timelike, or $G$ is
We consider restrictions placed by geodesic completeness on spacetimes possessing a null parallel vector field, the so-called Brinkmann spacetimes. This class of spacetimes includes important idealized gravitational wave models in General Relativity,
Let $M$ be a differentiable manifold, $T_xM$ be its tangent space at $xin M$ and $TM={(x,y);xin M;y in T_xM}$ be its tangent bundle. A $C^0$-Finsler structure is a continuous function $F:TM rightarrow mathbb [0,infty)$ such that $F(x,cdot): T_xM righ
We examine the local geometry of affine surfaces which are locally symmetric. There are 6 non-isomorphic local geometries. We realize these examples as Type A, Type B, and Type C geometries using a result of Opozda and classify the relevant geometrie