ترغب بنشر مسار تعليمي؟ اضغط هنا

Automatic Detection and Compression for Passive Acoustic Monitoring of the African Forest Elephant

89   0   0.0 ( 0 )
 نشر من قبل Johan Bjorck
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we consider applying machine learning to the analysis and compression of audio signals in the context of monitoring elephants in sub-Saharan Africa. Earths biodiversity is increasingly under threat by sources of anthropogenic change (e.g. resource extraction, land use change, and climate change) and surveying animal populations is critical for developing conservation strategies. However, manually monitoring tropical forests or deep oceans is intractable. For species that communicate acoustically, researchers have argued for placing audio recorders in the habitats as a cost-effective and non-invasive method, a strategy known as passive acoustic monitoring (PAM). In collaboration with conservation efforts, we construct a large labeled dataset of passive acoustic recordings of the African Forest Elephant via crowdsourcing, compromising thousands of hours of recordings in the wild. Using state-of-the-art techniques in artificial intelligence we improve upon previously proposed methods for passive acoustic monitoring for classification and segmentation. In real-time detection of elephant calls, network bandwidth quickly becomes a bottleneck and efficient ways to compress the data are needed. Most audio compression schemes are aimed at human listeners and are unsuitable for low-frequency elephant calls. To remedy this, we provide a novel end-to-end differentiable method for compression of audio signals that can be adapted to acoustic monitoring of any species and dramatically improves over naive coding strategies.



قيم البحث

اقرأ أيضاً

446 - C. Chalmers , P.Fergus , S. Wich 2021
For centuries researchers have used sound to monitor and study wildlife. Traditionally, conservationists have identified species by ear; however, it is now common to deploy audio recording technology to monitor animal and ecosystem sounds. Animals us e sound for communication, mating, navigation and territorial defence. Animal sounds provide valuable information and help conservationists to quantify biodiversity. Acoustic monitoring has grown in popularity due to the availability of diverse sensor types which include camera traps, portable acoustic sensors, passive acoustic sensors, and even smartphones. Passive acoustic sensors are easy to deploy and can be left running for long durations to provide insights on habitat and the sounds made by animals and illegal activity. While this technology brings enormous benefits, the amount of data that is generated makes processing a time-consuming process for conservationists. Consequently, there is interest among conservationists to automatically process acoustic data to help speed up biodiversity assessments. Processing these large data sources and extracting relevant sounds from background noise introduces significant challenges. In this paper we outline an approach for achieving this using state of the art in machine learning to automatically extract features from time-series audio signals and modelling deep learning models to classify different bird species based on the sounds they make. The acquired bird songs are processed using mel-frequency cepstrum (MFC) to extract features which are later classified using a multilayer perceptron (MLP). Our proposed method achieved promising results with 0.74 sensitivity, 0.92 specificity and an accuracy of 0.74.
Data privacy and protection is a crucial issue for any automatic speech recognition (ASR) service provider when dealing with clients. In this paper, we investigate federated acoustic modeling using data from multiple clients. A clients data is stored on a local data server and the clients communicate only model parameters with a central server, and not their data. The communication happens infrequently to reduce the communication cost. To mitigate the non-iid issue, client adaptive federated training (CAFT) is proposed to canonicalize data across clients. The experiments are carried out on 1,150 hours of speech data from multiple domains. Hybrid LSTM acoustic models are trained via federated learning and their performance is compared to traditional centralized acoustic model training. The experimental results demonstrate the effectiveness of the proposed federated acoustic modeling strategy. We also show that CAFT can further improve the performance of the federated acoustic model.
Cough is one of the most common symptoms in all respiratory diseases. In cases like Chronic Obstructive Pulmonary Disease, Asthma, acute and chronic Bronchitis and the recent pandemic Covid-19, the early identification of cough is important to provid e healthcare professionals with useful clinical information such as frequency, severity, and nature of cough to enable better diagnosis. This paper presents and demonstrates best feature selection using MFCC which can help to determine cough events, eventually helping a neural network to learn and improve accuracy of cough detection. The paper proposes to achieve performance of 97.77% Sensitivity (SE), 98.75% Specificity (SP) and 98.17% F1-score with a very light binary classification network of size close to 16K parameters, enabling fitment into smart IoT devices.
Existing automatic music generation approaches that feature deep learning can be broadly classified into two types: raw audio models and symbolic models. Symbolic models, which train and generate at the note level, are currently the more prevalent ap proach; these models can capture long-range dependencies of melodic structure, but fail to grasp the nuances and richness of raw audio generations. Raw audio models, such as DeepMinds WaveNet, train directly on sampled audio waveforms, allowing them to produce realistic-sounding, albeit unstructured music. In this paper, we propose an automatic music generation methodology combining both of these approaches to create structured, realistic-sounding compositions. We consider a Long Short Term Memory network to learn the melodic structure of different styles of music, and then use the unique symbolic generations from this model as a conditioning input to a WaveNet-based raw audio generator, creating a model for automatic, novel music. We then evaluate this approach by showcasing results of this work.
The deep neural network (DNN) based speech enhancement approaches have achieved promising performance. However, the number of parameters involved in these methods is usually enormous for the real applications of speech enhancement on the device with the limited resources. This seriously restricts the applications. To deal with this issue, model compression techniques are being widely studied. In this paper, we propose a model compression method based on matrix product operators (MPO) to substantially reduce the number of parameters in DNN models for speech enhancement. In this method, the weight matrices in the linear transformations of neural network model are replaced by the MPO decomposition format before training. In experiment, this process is applied to the causal neural network models, such as the feedforward multilayer perceptron (MLP) and long short-term memory (LSTM) models. Both MLP and LSTM models with/without compression are then utilized to estimate the ideal ratio mask for monaural speech enhancement. The experimental results show that our proposed MPO-based method outperforms the widely-used pruning method for speech enhancement under various compression rates, and further improvement can be achieved with respect to low compression rates. Our proposal provides an effective model compression method for speech enhancement, especially in cloud-free application.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا